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Real-Time Neurophysiological and Subjective Indices 
of Cognitive Engagement in High-Speed Flight
Matthew D’alessandro; Ryan Mackie; tom Berger; carl Ott; christopher sullivan; ian curry

 INTRODUCTION: Managing cognitive demand is critical for aviation safety. Yet, accurately assessing pilot workload during complex 
flight maneuvers remains challenging. this study evaluated an integrated methodology combining real-time cognitive 
engagement indicators to provide a comprehensive assessment and assess the reliability of physiological and subjective 
measures for monitoring operator state.

 METHODS: six experienced U.s. army rotary-wing pilots completed simulated high-workload flight scenarios like low-altitude, 
reconnaissance, and air threat avoidance maneuvers. continuous wireless electroencephalography (eeG), heart rate 
data, and subjective workload ratings were recorded during the flights.

 RESULTS: eeG engagement indices and heart rate variability metrics demonstrated reliable within-subject consistency across trials 
for individual pilots, with mean intraclass correlation coefficient values ranging from 0.59–0.69. Both measures exhibited 
synchronized fluctuations across pilots at key events, increasing during high workload segments and decreasing in 
lower demand periods. subjective ratings also showed good within-subject reliability, with mean intraclass correlation 
coefficient values ranging from 0.74–0.85. these findings underscore the reliability of our measurements, instilling 
confidence in the validity of our research.

 DISCUSSION: the findings of this study provide strong support for the feasibility of using a multi-measure approach that integrates 
eeG, heart rate variability, and subjective ratings. this approach can continuously monitor real-time cognitive workload 
fluctuations during simulated rotary-wing operations. While objective measures showed within-subject consistency, 
substantial between-subject variability highlights the importance of individualized neurocognitive profiling. the 
integration of neurophysiological, autonomic, subjective, and environmental data holds great promise for the future of 
pilot workload assessment despite the challenges posed by individual differences.
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 Assessing physiological and performance metrics in mil-
itary pilots is critical for aviation safety. There has been 
growing interest in evaluating “cognitive workload” in 

pilots. However, it is essential to recognize that “workload” rep-
resents a global construct emerging from concurrent task 
demands. The Human Performance Envelope concept consid-
ers the complex interactions of factors impacting performance 
variations that must be inferred through analyzing behaviors as 
well as psychological and physiological processes.1,2 Currently, 
there is no single definition or direct measure of workload due 
to its multifaceted nature. A high workload can overload atten-
tional resources, thus prompting errors and accidents, while a 
very low workload may cause boredom and reduced situational 
awareness. Still, objectively measuring and quantifying pilot 

cognitive workload remains an ongoing challenge in human 
factors research. The approach must incorporate inputs from 
different physiological sources into a multifaceted assessment, 
yet the key sources and definitions require further delineation 
and consensus. Nonetheless, prior studies have demonstrated 
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the feasibility of using physiological and subjective metrics to 
provide insight into workload quantification in pilots. 3 

 Previous studies evaluating pilot cognitive workload have 
used many different physiological metrics and devices to 
attempt to objectively measure this multifaceted construct 4 ; for 
example, using multichannel electroencephalography (EEG) 
recordings, Antonenko and colleagues found that power spec-
tral features in the theta band correlated with task difficulty. 5  
Similarly, other findings have demonstrated EEG coherence 
measures could distinguish high vs. low workload segments in 
real flight operations. 6  However, as EEG specifically measures 
electrical brain activity, it can only directly interpret levels of 
engagement as reflected in different frequency waves. While 
EEG serves as an objective metric of overall cognitive engage-
ment, its utility is limited to interpreting engagement levels and 
fails to encapsulate the multifaceted nature of workload fully. 
Nonetheless, EEG can directly provide information about cog-
nitive engagement and alertness through an engagement index 
[β/(α + θ)], positively correlating with concentration and 
task load. 7 

 In addition to EEG, heart rate variability (HRV) has shown 
promise as a physiological indicator that may aid in evaluating 
workload. 8 ,  9  HRV reflects dynamic autonomic changes modu-
lated by cognitive demands. 10 ,  11  In a flight simulator study, 
decreased HRV was associated with executing complex 
maneuvers, suggesting HRV may provide an objective workload  
metric. 12  Integrating EEG and HRV assessment could offer 
complementary central and autonomic nervous system perspec-
tives on pilot engagement. A combination approach to assessing 
physiological indices and subjective ratings may enable more 
robust real-time quantification of mental and physiological met-
rics in pilots during actual or simulated flights.

 This study aimed to demonstrate the feasibility and validity 
of using EEG engagement indices, HRV, and modified Bedford 
workload ratings as metrics for monitoring cognitive engage-
ment during simulated rotary-wing flight. Furthermore, this 
study aimed to investigate the aggregated physiological and 
subjective factors comprising cognitive workload in military 
pilots during simulated flight scenarios rather than examining 
the effects of cognitive workload itself. We hypothesized that: 
1) the EEG engagement index would positively correlate with 
mental demand while HRV would negatively correlate with 
mental demand; 2) physiological metrics (EEG and HRV) and 
modified Bedford ratings would exhibit concurrent validity 
across flight segments; and 3) physiological measures would 
sensitively capture engagement fluctuations across scenarios. 
Our findings could facilitate adopting more objective, multifac-
eted mental workload assessments to enhance aviation safety. 

METHODS

Subjects
 This study was approved by the U.S. Army Combat Capabilities 
Development Command Human Research Protection Program 
(#23-016) and all pilots provided consent before participation. 

Pilots were briefed on the experimental conditions and the pro-
prietary use of the data that was obtained from their participa-
tion. This study involved six experienced (over 1000 military 
flight hours) U.S. Army pilots (four experimental pilots and two 
operational pilots) who flew four rotary-wing aircraft configu-
rations in the NASA Ames Vertical Motion Simulator (NASA, 
Moffet Field, CA, United States).  

 Procedure
 The aircraft configurations comprised two full-authority fly-by-
wire flight control systems and two partial-authority systems. 
The full-authority configurations included a lift-offset coaxial- 
compound longitudinal thrust axis (Coax) helicopter and a 
winged single main rotor helicopter (WSMR). The partial- 
authority configurations consisted of the partial-authority 
winged single main rotor helicopter (PAW) and a conventional 
single main rotor helicopter (UH-60). Two mission vignettes, 
each approximately 10 min long, were developed to simulate 
scout missions flown by a single pilot under daytime condi-
tions. A modified workload assessment was conducted through 
physiological monitoring and pilots’ in-situ self-reporting. Data 
was collected for 2 wk. Three pilots participated in the experi-
ments in week one, and three participated in the second week. 
During each week, pilots first flew one full-authority aircraft 
configuration followed by one partial-authority aircraft config-
uration. This approach allowed pilots sufficient time to train on 
the different configurations and mission scenarios before data 
collection. The first pilot cohort (week 1) flew the full-authority 
Coax and the partial-authority UH-60 aircraft. The second 
pilot cohort (week 2) flew the full-authority and partial-authority 
winged single main rotor aircraft (WSMR and PAW).

 The first flight scenario (further referred to as Dawson) 
required an advance to contact along the Cheat River to estab-
lish an observation post and attack by fire position. Flying the 
designated route initially at the best range airspeed of 150 kn 
indicated airspeed (KIAS), pilots needed to switch to the best 
endurance airspeed at 100 KIAS before transitioning to 80 
KIAS nap-of-earth flight along the rolling river valley. At speci-
fied points, the mission involved vertical and lateral unmasking 
to quickly achieve a stable hover for simulated deployment of 
air launched effects. The main objectives included precise 
low-altitude flight, airspeed control within 10 KIAS of specified 
values, rapid unmasked hover transitions, and timed route 
completion under 600 s.

 The second scenario (further referred to as Ojai) consisted 
of a reconnaissance route along Highway 33 to identify enemy 
vehicles for surveillance handoff to organically controlled 
autonomous systems. This profile mandated that pilots main-
tain 100 KIAS and restrict above-ground level altitude to below 
150 ft (46 m), all while flying a narrow, sinuous canyon. Enemy 
air defense systems in fictionalized threat scenarios necessi-
tated the extremely low altitude. Pilots were instructed to 
deploy air-launched effects upon visually acquiring enemy 
vehicles before continuing the route to a specified endpoint. 
The main objectives included airspeed control within 5 KIAS, 
altitude conformance within strict margins, visually identifying 
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all simulated enemy entities, and avoiding ground collisions 
despite the hazardous terrain proximity.

Materials
Pilots provided real-time workload ratings in both flight sce-
narios at 30-s intervals through cockpit interfaces. Quantifiable 
performance data recorded by the simulator included aircraft 
position and control information, flight technical errors, run 
durations, and achievement of key timed mission tasks (data 
not shown). Continuous wireless recordings of brain electrical 
activity (EEG) and heart rate variability monitored physiologi-
cal workload responses. Pilots were encouraged to minimize 
vocalizations to only necessary ones to reduce additional arti-
facts for the physiological data.

This study recorded EEG data using the 10-channel B-Alert 
EEG (B-Alert ×10, Biopac Systems Inc., Goleta, CA, United 
States) system, as EEG recordings have been successfully used 
in physiological assessment of military-relevant tasks.13 We 
recorded continuous wireless EEG during the simulated flights 
and extracted spectral features to calculate the β/(α + θ) band 
power ratios previously validated for workload assessment.14 
While all 10 EEG channels were recorded during the flights, 
only the frontal channels were used to calculate the β/(α + θ) 
index. EEG data provides several objective metrics for quantify-
ing pilots’ engagement across varying task demands.

 One effective index is the engagement index β/(α + θ) (EEG- 
BAT), defined by Prinzel and colleagues. This index calculates 
the ratio of beta power to the sum of alpha and theta power in 
frontal EEG channels. A higher engagement index indicates 
greater cognitive engagement and alertness. Studies have demon-
strated that this index positively correlates with task load, making 
it very effective for one metric of the ever-complex interpretation 
of workload quantification. 7  The engagement index has also 
been shown to reduce over time during sustained attention tasks, 
demonstrating the deterioration of engagement. 15  The EEG-BAT 
index is highly recommended for adaptive system design due to 
its sensitivity. Studies of complex piloting tasks have found higher 
values in fronto-central and parietal EEG regions, indicating 
greater engagement demands. 16 

 This study recorded electrocardiography (ECG) data using 
the Polar H10 heart rate monitor (Polar Electro, Helsinki, 
Finland). The Polar H10 chest strap monitor provides continu-
ous, accurate heart rate measurement via Bluetooth connectiv-
ity. Through the use of interference-preventing algorithms, the 
heart rate monitor can provide beat-to-beat precision. This val-
idated monitor provides the necessary measurements to quan-
tify heart rate variability during the simulated flight sessions. 
HRV was calculated from the recorded ECG data using a 60-s 
rolling window.

 We employed a modified version of the Bedford Workload 
Scale to assess subjective workload. The original Bedford 
Workload Scale uses 10 rating points; however, this study 
reduced the number of rating options to 5—this adaptation 
aimed to facilitate real-time workload assessments by pilots 
during the execution of flight scenarios. The modified scale 
allowed pilots to provide subjective workload ratings ranging 

from 1 to 5, with 1 representing negligible effort and insignifi-
cant workload and 5 indicating an extremely high workload 
with no spare capacity. Five buttons in a line were placed on the 
instrument panel in a direct forward eye line to obtain these 
ratings. Every 30 s, the buttons would flash to cue the pilot to 
make a selection.

 Using a modified Bedford Workload Scale with fewer rating 
options facilitated the pilots’ ability to provide subjective work-
load assessments in real time without interrupting their pri-
mary task of flying the mission scenarios. By incorporating 
visual cues and a straightforward rating system, this study 
design aimed to minimize the cognitive load associated with 
the workload assessment process, thereby increasing the reli-
ability and validity of the subjective workload measures. This 
approach allowed researchers to capture pilots’ perceived work-
load fluctuations throughout the mission scenarios, enabling a 
more comprehensive understanding of the subjective workload 
experienced during various phases and events. The instanta-
neous workload assessments could then be analyzed with 
objective measures, such as performance metrics or physiolog-
ical data, to gain deeper insights into the factors influencing 
workload and their potential implications for task performance 
and pilot well-being. Here, we compared the modified Bedford 
ratings to HRV and EEG-BAT using correlations to assess the 
relationship between the pilot’s subjective interpretation of 
workload and their physiological engagement.

Statistical Analysis
All statistical analyses were performed using R (R Foundation 
for Statistical Computing, Vienna, Austria) and R Studio (Posit 
Software PBC, Boston, MA, United States).17 All statistical tests 
were evaluated at a significance level of 0.05. Mean values 
reported in the text will include 95% confidence intervals in 
parentheses. To analyze changes in EEG and HRV over time, 
each flight scenario was divided into sections ranging from 
30–150 s in length ( Table I  ). Each section’s start and stop times 

Table I. Description and Average Time for Flight Scenario Sections.

SCENARIO &  
FLIGHT SECTION TIME (s) DESCRIPTION
Dawson
 1–2 88.0 (3.7) Maintain 150 KIAS. Degraded visual 

environment from fog (Section 
2 only).

 3 125.4 (11.9) Maintain 150 KIAS. Degraded visual 
environment from fog.

 4 78.5 (15.7) Decelerate to hover. Unmask and 
deploy air launched effects.

 5 97.2 (12.3) Accelerate and maintain 80 KIAS.
 6 94.0 (19.6) Decelerate to hover. Unmask and 

deploy air launched effects.
Ojai
 1 80.8 (11.4) Maintain 150 KIAS.
 2–4 109.6 (5.6) Canyon flight. Maintain 100 KIAS. 

Identify enemy vehicles Deploy air 
launched effects.

 5 54.9 (12.8) Exit canyon and decelerate to hover.

 Time values are mean and standard deviation. KIAS: knots indicated air speed.
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were defined separately for individual flights because pilots did 
not complete flight sections in the same amount of time. All 
statistical analyses were performed separately for the two flight 
scenarios. 

 EEG-BAT and HRV data were averaged for each flight 
section. To account for individual differences between pilots, 
average EEG-BAT and HRV values were analyzed separately 
using mixed-effects linear regression models. Each regres-
sion model consisted of fixed categorical variables for aircraft 
(four levels) and flight section (5 or 6 levels for Ojai and 
Dawson, respectively), an interaction effect for aircraft and 
flight section, and a random intercept for each pilot. 
Regression model residuals were checked for normality and 
homoscedasticity to validate the linear regression models. 
Omnibus tests for aircraft, flight section, and the interaction 
effect were analyzed using the ANOVA function applied to 
the linear regression model.

 When the omnibus test for the flight section was statistically 
significant, pairwise comparisons were made using the emmeans 
R package, with P -values adjusted using the Benjamini-Hochberg 
method to control the false discovery rate and balance con-
trolling for Type 1 and Type 2 errors. To further reduce the 
chances of a Type 1 error, pairwise comparisons were only 
made against flight section 1 for each flight scenario. Using the 
initial active flying phase (section 1) as the reference point for 
analysis allowed us to isolate and understand the impact of sub-
sequent events and tasks on the pilots’ cognitive and physiolog-
ical responses beyond the demands of simply operating the 
aircraft during routine flight conditions.

 Modified Bedford workload ratings were collected at 30-s 
intervals during each flight. To create a continuous time-series 
variable, each rating was carried forward until the next rating. 
However, this method assumes that the workload changes 
instantaneously after each rating, which is unrealistic. Therefore, 
the workload ratings were shifted back by 15 s, allowing each 
30-s window to be centered on when the pilot provided the rat-
ing. The continuous, shifted modified Bedford ratings were 
then averaged for each flight section, similar to EEG-BAT and 
ECG data processing. These average values were used for all 
analyses presented in this report.

 Intraclass correlation coefficients (ICC) were used to 
examine test-retest reliability for EEG-BAT, HRV, and modi-
fied Bedford workload data collected during repeated flights. 
ICC estimates were calculated using the psych R package, 
based on a single measurement, two-way mixed-effects model, 
as is appropriate for test-retest validation. Interpreting ICC 
values can be subjective and depends on the context of the 
data being analyzed. Generally, ICC values between 0.50 and 
0.75 suggest moderate reliability, values between 0.75 and 
0.90 suggest good reliability, and values above 0.90 suggest 
excellent reliability. When interpreting ICC values, it is also 
important to note that coefficients reflect the degree of cor-
relation and agreement between repeat measurements. Data 
with low correlation values will have low ICC values, even 
when the data is reproducible. 18     

RESULTS

 A total of 52 Dawson flights and 48 Ojai flights were completed 
between the 6 pilots. Four Ojai flights were removed from all 
analyses due to the pilot not completing the flight as directed. 
Results from the analyses are presented in  Fig. 1  ,  Fig. 2  ,  Fig. 3  , 
and  Fig. 4  .    

 This study evaluated the EEG-BAT engagement index in 
pilots across four aircraft configurations and two flight scenar-
ios. Despite between-subject variability in absolute EEG-BAT 
values, within-subject consistency emerged across repeated 
flights ( Figs. 1A ,  1B ). The EEG-BAT patterns demonstrated 
minimal deviation across runs with the same aircraft and sce-
nario for a given pilot. Repeated flights in the Dawson and Ojai 
scenarios had mean ICC values of 0.59 (0.41, 0.76) and 0.69 
(0.52, 0.87), respectively ( Fig. 2A ). This suggests moderate 
test-retest reliability of the EEG-BAT index within individuals 
under similar conditions. Examining the EEG traces, common 
inflection points emerged across pilots during key phases of the 
flight scenarios. For all aircraft types and scenarios, increases 
and decreases in the EEG-BAT engagement index occurred at 
relatively consistent timeframes across pilots. For example, 
during the low-altitude nap-of-earth portions of the Dawson 
scenario, EEG-BAT spiked upwards at similar time points for 
all pilots, reflecting heightened attentional demands during this 
challenging flight segment. Conversely, a downward shift in 
EEG-BAT was observed in the straight and level transit phases, 
indicating reduced engagement.

 The time-locked changes in EEG-BAT across individuals 
suggest that the brain’s electrical activity reliably tracks varia-
tions in engagement associated with changing task demands 
and flight segments. This within-subject consistency supports 
the feasibility of objectively using EEG-derived engagement 
indices to quantify real-time workload fluctuations during sim-
ulated flight operations. The similar inflection patterns across 
pilots further demonstrate that all pilots experienced compara-
ble engagement index profiles throughout the different flight 
scenarios. This provides concurrent validity for the sensitivity 
of the EEG-BAT index to accurately capture relative varia-
tions in task engagement and offer insights into overall cogni-
tive demand.

 We analyzed EEG-BAT values using mixed-effects linear 
regression models to examine between-subject consistency. 
The EEG-BAT regression model for the Dawson scenario 
showed that the interaction effect between section and aircraft 
was not statistically significant [F (15, 306.0) = 1.16, P  = 0.31]. 
The interaction effect was removed and the regression model 
was re-evaluated. The updated regression model showed that 
the section and aircraft coefficients were statistically significant 
( Table II  ). Pairwise comparisons for sections showed statisti-
cally significant differences between section 1 and sections 2 
and 4 ( Table III   and  Fig. 1C ).  

 The results of the EEG-BAT regression model for the Ojai 
scenario showed that the interaction, section, and aircraft coef-
ficients were all statistically significant (Table II). Pairwise 
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comparisons for the sections showed significant differences for 
all four aircraft ( Table III  and  Fig. 1D ). The Coax aircraft 
showed significant differences between section 1 and sections 
3, 4, and 5. The PAW aircraft showed significant differences 
between section 1 and sections 3 and 4. The UH-60 aircraft 
showed significant differences between section 1 and sections 4 
and 5. The WSMR aircraft showed significant differences 
between section 1 and sections 3 and 4.

 In addition to EEG, HRV was continuously monitored 
during the flights to provide an autonomic perspective on 
workload. Analysis of the HRV data revealed a similar pat-
tern of within-subject consistency across repeated flights. For 
individual pilots, minimal deviations occurred in HRV  
values between runs with the same aircraft and scenario  
( Fig. 3A  and  3B ). Repeated flights in the Dawson and Ojai 
scenarios had mean ICC values of 0.65 (0.54, 0.77) and 0.62 
(0.48, 0.76), respectively ( Fig. 2B ). This suggests moderate 
test-retest reliability for the HRV measures within a given 
pilot under similar conditions. Examination of the HRV 

traces indicated common points of inflection that were con-
sistent across pilots during key phases. For all aircraft, 
increases and decreases in HRV values occurred at relatively 
similar timeframes for each pilot. For example, during the 
high workload nap-of-earth segments in the Dawson sce-
nario, HRV decreased at comparable points for pilots. This 
reflects heightened sympathetic activation and reduced HRV 
associated with increased task demands.

 Conversely, straight and level transit phases elicited increases 
in HRV, indicating lower cognitive workload and greater para-
sympathetic activation. The synchronized HRV changes across 
pilots suggest that autonomic activity reliably tracks variations 
in workload between flight segments. The similar HRV fluctu-
ation patterns across pilots provide concurrent validity that 
HRV can sensitively capture relative changes in cognitive work-
load and physiological arousal. The comparable inflection 
points also suggest that all pilots experienced similar workload 
profiles throughout the scenarios based on the autonomic 
response.
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Fig. 1. EEG-BAT raw values and estimated values from mixed-effects linear regression models. A) Dawson raw values. B) Ojai raw values. C) Dawson 
estimated means and 95% CI. D) Ojai estimated means and 95% CI. Asterisks indicate statistically significant changes compared to section 1 (*P ≤ 0.05, 
**P ≤ 0.01, ***P ≤ 0.001).
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 As with the EEG data, the between-subject consistency of 
HRV was evaluated using mixed-effects linear regression mod-
els. The HRV regression model for the Dawson scenario showed 
that the interaction effect between section and aircraft was not 
statistically significant [F (15, 306.0) = 1.04, P  = 0.41]. The inter-
action effect was removed and the regression model was 
re-evaluated. The updated regression model showed that section 
and aircraft fixed effects were statistically significant ( Table II ).  
Pairwise comparisons for sections showed statistically signifi-
cant differences between section 1 and sections 4 and 5 ( Table 
III  and  Fig. 3C ). The Ojai HRV regression model showed that 
the interaction, section, and aircraft coefficients were all statis-
tically significant ( Table II ). Pairwise comparisons for sections 
showed significant differences for two out of four aircraft ( Table 
III  and  Fig. 3D ). The PAW aircraft showed significant differ-
ences between section 1 and sections 2, 3, 4, and 5. The WSMR 
aircraft showed one significant difference between sections 1 
and 2. Overall, analysis of the HRV data demonstrates 

within-subject consistency and between-subject synchroniza-
tion of workload-related HRV changes. This supports the feasi-
bility of using HRV to objectively quantify a component of 
cognitive workload fluctuations in real-time flight settings. 
Additionally, HRV provides a complementary autonomic per-
spective to the EEG engagement indices.

 The modified Bedford workload ratings demonstrated good 
consistency within individual pilots across the different flight 
scenarios. While pilots varied in their overall workload ratings, 
each tended to rate similar phases of flight consistently as higher 
or lower workload when comparing across different aircraft 
( Fig. 4 ). Repeated flights in the Dawson and Ojai scenarios had 
mean ICC values of 0.85 (0.81, 0.89) and 0.74 (0.62, 0.85), 
respectively, suggesting moderate to good test-retest reliability. 
Between pilots, the trends in workload ratings showed similari-
ties, though there was less consistency compared to the within- 
subject ratings. This suggests that while all pilots experienced 
increases and decreases in workload at approximately the same 
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Fig. 2. A) Intraclass correlation coefficients for EEG-BAT. B) Intraclass correlation coefficients for HRV. C) Pearson correlation coefficients for Bedford work-
load ratings and EEG-BAT. D) Pearson correlation coefficients for Bedford workload ratings and HRV. Each subfigure shows raw data with associated mean 
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points of the flights, their subjective experience and rating of the 
workload demands varied more across individuals. Despite this 
between-subject variability, one clear pattern emerged: the low-
est workload rating for nearly every pilot on almost every flight 
occurred during the beginning phase of operations (section 1). 
This aligns with an expected baseline of moderate workload 
associated with operating the aircraft during routine flying con-
ditions before additional tasks or complexities were introduced 
later in each flight scenario.

 To further explore the relationship between subjective work-
load assessments and objective measures of cognitive engage-
ment, we conducted a correlation analysis between the pilots’ 
ratings on the modified Bedford Workload Scale and each of 
the physiological engagement indices (EEG-BAT and HRV). 
Pearson correlation coefficients were calculated for each unique 
pilot, aircraft, and scenario combination.  Figs. 2C  and  2D  show 
the Pearson correlation coefficients for each physiological index 
and scenario and the mean correlation coefficients with 95% 
confidence intervals. The modified Bedford-EEG correlations 

for the Ojai scenario showed the best consistency. All correla-
tion coefficients were positive apart from one value, and most 
correlations were close to or above 0.5. The mean correlation 
for Ojai was 0.45 (0.28, 0.61), suggesting a low to moderate pos-
itive correlation between the modified Bedford ratings and 
EEG-BAT values. The modified Bedford-EEG correlations for 
the Dawson scenario were less consistent and showed the oppo-
site trend compared to the Ojai scenario. Out of 12 total cor-
relation coefficients, 8 were negative. The mean correlation for 
Dawson was −0.18 (−0.49, 0.14), suggesting a low negative cor-
relation. This is the opposite of what was hypothesized based on 
existing literature showing that EEG positively correlates with 
workload measures.

Modified Bedford-HRV correlations were less consistent 
compared to the modified Bedford-EEG correlations. Overall, 
there were more negative correlations than positive and the 
mean correlations were also negative for both the Ojai [−0.23 
(−0.43, −0.04)] and Dawson [−0.18 (−0.45, 0.09)] scenarios. 
This aligns well with existing literature showing a negative 
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Fig. 3. HRV raw values (ms) and estimated values from mixed-effects linear regression models. A) Dawson raw values. B) Ojai raw values. C) Dawson 
estimated means and 95% CI. D) Ojai estimated means and 95% CI. Asterisks indicate statistically significant changes compared to section 1 (*P ≤ 0.05, 
**P ≤ 0.01, ***P ≤ 0.001).
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correlation between HRV and workload measures. However, 
the modified Bedford-HRV correlations were not as strong as 
the modified Bedford-EEG correlations. Only 6 HRV correla-
tions had an absolute value ≥ 0.5, whereas 11 EEG correlations 
had an absolute value ≥ 0.5.  

DISCUSSION

 This study evaluated experienced U.S. Army pilots during sim-
ulated rotary-wing flight scenarios to investigate the aggregated 
physiological and subjective factors that comprise cognitive 
workload. EEG engagement indices revealed consistent pat-
terns within individual pilots across repeated trials of the same 
scenario. This observation, along with moderate ICC values, 
demonstrates the test-retest reliability of these metrics under 
similar conditions for a given pilot, aligning with prior re-
search on the within-subject reliability of EEG for workload 
assessment. 19  Simultaneously, substantial variability emerged 
between pilots regarding absolute baseline values and workload 
response profiles. This highlights the need to establish individ-
ualized cognitive state profiles through baseline EEG assess-
ments before evaluating workload, as individuals differ in 
arousal, attention, and cognitive processing due to underlying 
neurophysiological and personality differences. 20 ,  21  Thus, rela-
tive changes from baseline are more informative than absolute 
cross-subject comparisons.
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Fig. 4. Bedford workload rating raw values and mean values. A) Dawson raw values. B) Ojai raw values. C) Dawson means and 95% CI. D) Ojai means and 95% CI.

Table II. Results for EEG-BAT and HRV Mixed-Effects Linear Regression Models.

METRIC SCENARIO COEFFICIENT DF-b DF-w  F  P 
EEG-BAT Dawson Section 5 306.0 9.71 < 0.001

Aircraft 3 14.0 32.29 < 0.001
Ojai Interaction 12 213.9 2.70 0.002

Section 4 213.9 27.95 < 0.001
Aircraft 3 14.8 107.01 < 0.001

HRV Dawson Section 5 306.0 3.34 0.006
Aircraft 3 13.7 7.38 0.003

Ojai Interaction 12 214.0 2.43 0.006
Section 4 214.0 7.71 < 0.001
Aircraft 3 13.6 38.23 < 0.001

 Columns report between-groups (DF-b) and within-groups degrees of freedom (DF-w), 
 F -statistics, and P -values.
 EEG-BAT: engagement index β/(α + θ); HRV: heart rate variability.
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 Heart rate variability data reinforced this concept, with mod-
erate within-subject consistency but wide between-subject vari-
ations. The reliability of HRV as a workload indicator was 
further evidenced by synchronized changes at key mission 
points, aligning with prior research on HRV as a physiological 
marker of mental workload. 6  During high-intensity scenarios 
like low-altitude nap-of-earth flight segments, EEG-BAT and 
HRV shifted in the direction indicating heightened engagement 
and physiological arousal. 9 ,  21  However, terrain complexity and 
momentary mission relevancy also impacted pilot focus, com-
plicating workload assessments. For example, metrics showed 
greater variability during transit through wide-open canyon 
areas. Conversely, cognitive engagement intensified when navi-
gating narrow, enclosed areas requiring greater precision. This 
illustrates how workload metrics may fluctuate independently 
from flight technical demands based on the perception of situa-
tional importance, consistent with cognitive theories that situa-
tional factors shape resource allocation. 1 ,  22  The same terrain 
features can impose different cognitive loads depending on the 
mission phase. This underscores the need for holistic integra-
tion of physiological data with flight technical parameters, per-
formance metrics, and subjective appraisals. 19 ,  20 

 Pearson correlation coefficients were computed to investi-
gate the potential association between subjective workload rat-
ings and objective engagement indices. By establishing these 
correlations, we sought to validate the subjective workload 
assessments obtained through the modified Bedford Workload 
Scale against the objective physiological measurements.  
A strong correlation would support the convergent validity of 
the subjective ratings, indicating that they accurately reflect the 
pilots’ cognitive engagement levels during the mission scenar-
ios. Furthermore, correlation analysis could provide insights 

into the sensitivity and responsiveness of the subjective work-
load scale in capturing variations in cognitive workload, as well 
as the potential relationship between subjective perceptions of 
workload and objective physiological measures of engagement. 23 

 The correlation analysis between subjective workload rat-
ings obtained through the modified Bedford Workload Scale 
and objective measures of cognitive engagement yielded con-
trasting results across the two mission scenarios investigated in 
this study. In the Ojai scenario, a statistically significant positive 
mean correlation was observed between the pilots’ subjective 
workload ratings and the EEG-BAT index ( Fig. 2C ). This 
positive correlation suggests that as the perceived workload 
increased, as reported by the pilots using the modified Bedford 
Workload Scale, the objective measures of cognitive engage-
ment, as reflected by the EEG-BAT index, also tended to 
increase. This finding supports the convergent validity of the 
subjective workload assessments, indicating that the pilots’ sub-
jective workload experiences aligned with their physiological 
states of cognitive engagement during this mission scenario.

 Conversely, the Dawson flight scenario showed a negative 
but nonsignificant mean correlation between the subjective 
workload ratings and the EEG-BAT index. This lack of correla-
tion implies that the pilots’ subjective perceptions of workload 
did not consistently correspond with the objective measures of 
cognitive engagement derived from the EEG data. This dis-
crepancy could arise from various factors, such as:

  1.     Task characteristics: the nature and demands of the Dawson 
mission scenario may have involved cognitive processes or 
workload dimensions that were not accurately captured by 
EEG, leading to a dissociation between subjective experi-
ences and objective physiological measures.

  2.     Individual differences: variations in individual characteris-
tics, such as cognitive strategies, workload management 
skills, or physiological responses, could have influenced the 
relationship between subjective workload ratings and objec-
tive engagement measures in the Dawson scenario. 

  3.     Temporal dynamics: the temporal dynamics of subjective 
workload perceptions and physiological responses may 
have needed to be perfectly synchronized, potentially con-
tributing to the lack of correlation observed in the Dawson 
scenario.

 Interestingly, neither of the flight scenarios exhibited statisti-
cally significant mean correlations between the subjective modi-
fied Bedford workload ratings and HRV ( Fig. 2D ). HRV is a 
measure of autonomic nervous system activity and is often used 
as an indicator of physiological stress and mental workload. The 
absence of correlations with HRV data suggests that the subjec-
tive workload ratings and the EEG-BAT index may have 
captured different aspects of cognitive workload, potentially 
reflecting distinct underlying processes or mechanisms. The 
divergent patterns observed across the two scenarios highlight 
the complex nature of workload assessment and the potential 
influence of task characteristics, individual differences, and mea-
surement modalities on the relationships between subjective and 
objective workload measures. These findings underscore the 

Table III. Results for EEG-BAT and HRV Pairwise Comparisons from 
Mixed-Effects Linear Regression Models. 

METRIC SCENARIO AIRCRAFT SECTIONS  P 
EEG-BAT Dawson All 1 vs. 2 0.001

All 1 vs. 4 0.005
Ojai Coax 1 vs. 3 < 0.001

Coax 1 vs. 4 0.001
Coax 1 vs. 5 0.025
PAW 1 vs. 3 0.037
PAW 1 vs. 4 0.037
UH-60 1 vs. 4 0.028
UH-60 1 vs. 5 0.003
WSMR 1 vs. 3 < 0.001
WSMR 1 vs. 4 0.001

HRV Dawson All 1 vs. 4 0.033
All 1 vs. 5 0.007

Ojai PAW 1 vs. 2 < 0.001
PAW 1 vs. 3 0.005
PAW 1 vs. 4 0.028
PAW 1 vs. 5 < 0.001
WSMR 1 vs. 2 0.025

 Columns report aircraft type, sections that showed significant differences from section 
1, and P -values. P -values were adjusted using the Benjamini-Hochberg method.
 EEG-BAT: engagement index β/(α + θ); HRV: heart rate variability; Coax: lift-offset 
coaxial-compound longitudinal thrust axis helicopter; PAW: partial-authority winged 
single main rotor helicopter; UH-60: conventional single main rotor helicopter; WSMR: 
winged single main rotor helicopter.
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importance of multiple data sources and the need to consider 
contextual factors when interpreting workload assessments in 
complex operational environments.

 Future research could further investigate the factors contrib-
uting to the observed discrepancies, such as task analysis, indi-
vidual differences in workload perception and management 
strategies, and the temporal dynamics of subjective and objec-
tive workload measures. Additionally, exploring the integration 
of subjective and physiological measures could provide a more 
comprehensive understanding of the multidimensional nature 
of cognitive workload and its implications for human perfor-
mance in operational settings. Our findings support the feasi-
bility of combining EEG, HRV, and subjective workload ratings 
to evaluate multidimensional workload, which aligns with pre-
vious recommendations for using a combination assessment 
approach.14,24

 However, substantial processing is required to translate raw 
physiological signals into meaningful workload constructs. 
Individualized baselines and calibrations are essential to account 
for neurocognitive variability. 21 ,  25  Hence, an integrated method-
ology may prove promising to provide continuous real-time 
monitoring of the complex interactions between individual pilot 
cognitive states, flight environments, aircraft systems, and con-
trol interfaces. This can significantly enhance aviation safety and 
training by optimizing equipment and procedures for human- 
system performance. 1 ,  19  However, addressing individual variabil-
ity while considering contextual influences will remain a critical 
challenge for managing workload in real time. 20 ,  22 

 This study has some fundamental limitations to consider. 
The small sample size of only six experienced pilots limits gen-
eralizability, necessitating larger and more diverse pilot samples 
in future work. The fixed order of flight scenarios and aircraft 
configurations may have introduced order effects and bias as 
pilots gained familiarity over time, which could influence later 
performance independently of aircraft differences. Randomizing 
the order of flight scenarios and aircraft across pilots would mit-
igate such biases. However, the lack of randomization did not 
impact the assessment of measure reliability, which was the core 
focus of this study. Addressing these limitations with expanded 
sample sizes, randomization, and controlling for pilot experi-
ence levels will strengthen the interpretability and generalizabil-
ity of findings from subsequent studies.

 The flight simulations involved full motion in six axes, poten-
tially introducing artifacts into the EEG recordings. Pilot head 
movements and vocalization during the simulated flights may 
have also contributed to artifact contamination of the EEG 
signals. Careful sensor placement and advanced artifact removal 
techniques were implemented to minimize the influence of such 
artifacts on the EEG data and the derived engagement index cal-
culations. However, the residual artifact cannot be completely 
ruled out and may have impacted the EEG results. Future studies 
could incorporate additional artifact detection and removal 
methods and complementary neurophysiological measures that 
are less susceptible to motion artifacts to further improve the 
robustness and reliability of the cognitive workload assessments 
in dynamic operational environments.

 It should be noted that the B-Alert ×10 EEG system used in 
this study captures brain activity from a limited set of electrode 
locations (Fz, F3, F4, Cz, C3, C4, POz, P3, and P4) based on the 
International 10-20 System. While these locations provide valu-
able information about cognitive engagement and attentional 
processes, they do not provide comprehensive coverage of other 
brain regions that may also contribute to cognitive workload. 
Specifically, the B-Alert ×10 array lacks sensors at locations  
such as FP1, FP2, F7, F8, T3, T4, T5, T6, O1, and O2, which are 
known to capture neural activity related to emotional and con-
textual attention, working memory beyond frontal regions, and 
language processing—all of which are integral components of 
cognitive workload. For this study, we focused solely on the 
engagement index derived from the electrode recordings from 
the frontal cortex electrodes only. This limited spatial resolution 
of the EEG recordings is a notable limitation of the current 
study, as it may have failed to capture the full extent of brain 
dynamics underlying the multifaceted construct of cognitive 
workload. Future research employing higher-density EEG sys-
tems or complementary neuroimaging techniques could pro-
vide a more comprehensive assessment of the neural correlates 
of cognitive workload in complex operational environments.

 Another significant limitation to consider is the fixed place-
ment of sensors on the plastic band of the B-Alert ×10 system. 
This design may not accommodate varying head sizes accu-
rately, leading to potential inaccuracies in sensor positioning, 
especially for rear-mounted sensors like POz. Furthermore, the 
less-than-snug fitting of the sensor band could allow for unde-
sirable movement and shifting during the dynamic flight simu-
lations, introducing additional errors, particularly at sites like 
POz. Again, only data obtained from frontal lobe sensors were 
used for analysis for this study. However, researchers need to be 
aware that such inaccuracies in sensor placement and move-
ment artifacts could compromise the spatial precision of the 
EEG recordings, affecting the reliability and interpretability of 
the derived engagement indices. Future studies should consider 
employing EEG systems with more flexible, adjustable sensor 
arrangements or cap-based electrode arrays that conform more 
precisely to individual head sizes and shapes, minimizing posi-
tioning errors and movement-related artifacts.

 Moreover, this study employed a modified version of the 
Bedford Workload Scale, reducing the rating options from 10 to 
5. While this adaptation aimed to facilitate real-time workload 
assessments by pilots during flight execution, it deviates from the 
original, normed version of the scale. Modifying the scale in this 
manner raises concerns regarding the validity and comparability 
of the subjective workload ratings obtained in this study with 
established norms and findings from previous research using the 
standard Bedford Workload Scale. The reduced number of rat-
ing options may have limited the granularity and sensitivity of 
the subjective assessments, potentially affecting the ability to 
capture subtle variations in perceived workload. Furthermore, 
the absence of normative data and validation studies for the 
modified scale makes it challenging to interpret the subjective 
ratings in a broader context. Future research should consider 
employing the original Bedford Workload Scale or conducting 
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thorough validation studies for any modified versions to ensure 
the reliability and validity of subjective workload measures.

 The study design also may not have effectively distinguished 
changes in cognitive workload within each flight scenario. 
Capturing workload fluctuations across phases of flight could 
strengthen future experimental approaches in this area. While 
incorporating EEG and HRV data, additional real-time physio-
logical measures like eye tracking, pupillometry, skin imped-
ance, or other biomarkers may provide more significant insights 
into pilots’ mental states. Relying solely on subjective workload 
ratings leaves findings susceptible to response biases. Overall, 
while the unique engagement and experience of pilots repre-
sent a strength, several limitations should be addressed in 
follow-up work to bolster the interpretability and generalizabil-
ity of the findings. Incorporating larger subject samples, addi-
tional metrics, design enhancements, and a wider variety of 
aircraft will ultimately provide a deeper perspective on the cog-
nitive impacts of advanced flight systems.

Importantly, this study provides insight into the feasibility of 
using EEG, HRV, and subjective workload ratings to quantify 
cognitive workload in real time in a military aviation setting. 
The results highlight the importance of accounting for individ-
ual variability and contextual influences when interpreting 
physiological data. Within-subject consistency supports the 
feasibility of EEG and HRV for tracking workload fluctuations, 
but individual differences necessitate personalized baselines to 
capture relative changes. Workload metrics also vary with ter-
rain complexity and momentary mission relevance, emphasiz-
ing the need to integrate physiological data with environmental 
and performance data. Although advanced processing is 
required to translate signals into meaningful constructs, this 
approach shows promise for the continuous real-time monitor-
ing of complex interactions between pilot cognitive states, flight 
contexts, aircraft systems, and control interfaces.

Combining objective physiological metrics with subjective 
workload assessments may enhance our ability to optimize avi-
ation training and safety by quantifying the multidimensional 
nature of workload. However, accounting for individual neuro-
cognitive variability while also considering situational influ-
ences remains crucial, requiring a move from generalized 
models toward individually calibrated interfaces tailored to 
each pilot’s cognitive capabilities and the specific environmen-
tal context. Furthermore, incorporating additional monitoring 
techniques like pupillometry and eye tracking could provide 
further insights into workload fluctuations. The findings from 
this study represent an essential step toward developing percep-
tive aircraft systems that synthesize physiological, environmen-
tal, performance, and subjective data to facilitate optimal 
human-machine cooperation.    
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