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G-Induced Loss of Consciousness Prediction Using  
a Support Vector Machine
Nobuhiro Ohrui; Yuji Iino; Koichiro Kuramoto; Azusa Kikukawa; Koji Okano; Kunio Takada; Tetsuya Tsujimoto

	 INTRODUCTION:	 Gravity-induced loss of consciousness (G-LOC) is a major threat to fighter pilots and may result in fatal accidents.  
The brain has a period of 5–6 s from the onset of high +Gz exposure, called the functional buffer period, during which 
transient ischemia is tolerated without loss of consciousness. We tried to establish a method for predicting G-LOC within 
the functional buffer period by using machine learning. We used a support vector machine (SVM), which is a popular 
classification algorithm in machine learning.

	 METHODS:	T he subjects were 124 flight course students. We used a linear soft-margin SVM, a nonlinear SVM Gaussian kernel 
function (GSVM), and a polynomial kernel function, for each of which 10 classifiers were built every 0.5 s from the 
onset of high +Gz exposure (Classifiers 0.5–5.0) to predict G-LOC. Explanatory variables used for each SVM were age, 
height, weight, with/without anti-G suit, +Gz level, cerebral oxyhemoglobin concentration, and deoxyhemoglobin 
concentration.

	 RESULTS:	T he performance of GSVM was better than that of other SVMs. The accuracy of each classifier of GSVM was as follows: 
Classifier 0.5, 58.1%; 1.0, 54.8%; 1.5, 57.3%; 2.0, 58.1%; 2.5, 64.5%; 3.0, 63.7%; 3.5, 65.3%; 4.0, 64.5%; 4.5, 64.5%; and 
5.0, 64.5%.

	 CONCLUSION:	 We could predict G-LOC with an accuracy rate of approximately 65% from 2.5 s after the onset of high +Gz exposure 
by using GSVM. Analysis of a larger number of cases and factors to enhance accuracy may be needed to apply those 
classifiers in centrifuge training and actual flight.

	 KEYWORDS:	 gravity-induced loss of consciousness, machine learning, support vector machine.
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Gravity-induced loss of consciousness (G-LOC) is a 
major threat to high performance fighter pilots. A U.S. 
Air Force study showed that G-LOC-related accidents 

occurred 25.1 times per million flights during the period from 
1982 to 2002 and that 3.6% of those accidents were fatal.7 The 
rate of occurrence of G-LOC in aircrew in other countries has 
been reported to be 8.2–20.1%.3,4,14 G-LOC is caused by expo-
sure to high and sustained levels of head-to-foot G force (+Gz) 
that reduce cerebral blood flow, resulting in a reduction in oxy-
gen supply to the brain. To prevent G-LOC, centrifuge training 
for high performance fighter pilots is conducted in many coun-
tries. The Japan Air Self-Defense Force (JASDF) requires its 
pilot candidates to undergo centrifuge training as a part of the 
initial training, and its fighter pilot trainees are required to 
undergo centrifuge training as a part of the advanced training.10  
During centrifuge training, trainers monitor the pilot’s facial 

expressions, loss of response, and loss of postural tone to detect 
G-LOC. However, during actual flight, it is impossible to detect 
G-LOC because there is no monitoring of the pilot’s facial 
expressions, loss of response, or loss of postural tone. Therefore, 
G-LOC is only detected during centrifuge training. Although 
there have been many studies on the detection of onset of 
G-LOC using physiological monitoring without monitoring of 
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facial expressions, loss of response, and loss of postural tone, an 
onset of G-LOC detection system has not yet been developed.

Near-infrared spectroscopy (NIRS) is an easy-to-use and 
noninvasive method for continuous real-time monitoring of 
cerebral cortical oxygenation. NIRS has been used by the 
JASDF to try to predict G-LOC during centrifuge training.5,11 
It is thought that G-LOC occurs when the cerebral oxyhemo-
globin concentration (OxyHb) measured by NIRS falls below 
a certain level that maintains brain functions. However, the 
extent of decrease in OxyHb that leads to G-LOC is not known 
and there are, therefore, limitations of NIRS for G-LOC detec-
tion and prediction. We have established a formula for pre-
dicting G-LOC by logistic regression analysis using rate of 
change from maximum to minimum values of OxyHb and 
body mass index as explanatory variables.11 The formula for 
predicting G-LOC showed sensitivity, specificity, and accu-
racy of 67.6%, 81.4%, and 79.5%, respectively. However, this 
formula has a few problems: 1) it cannot predict G-LOC until 
just before the occurrence of G-LOC; and 2) the rate of change 
from maximum to minimum values of OxyHb must be calcu-
lated in advance and G-LOC, therefore, cannot be predicted 
in real time. For these reasons, we are trying to establish a 
more effective way to predict G-LOC in real time.

The brain has the ability to tolerate transient ischemia 
without loss of consciousness during high +Gz exposure. The 
period of tolerance has been termed the “functional buffer 
period (FBP)” and lasts for approximately 5–6 s against any 
+Gz exposure.8,16 Therefore, it has been thought that G-LOC 
does not occur during the FBP. Prediction of G-LOC as soon 
as possible from the onset of high +Gz exposure during the 
FBP would be extremely useful as a G-LOC countermeasure. 
We previously analyzed OxyHb during the FBP (5 s after the 
onset of high +Gz exposure) to predict whether G-LOC would 
occur.12 Unfortunately, despite analyzing the results using a 
variety of statistical analyses, we were unable to find a specific 
pattern that predicted G-LOC.

There have been many developments in machine learning 
techniques that use computers to extract specific patterns 
from various events. Statistical analysis focuses on explaining 
or interpreting the nature of data, whereas machine learning 
is a method that focuses on more accurate prediction and 
classification. Machine learning enables the analysis of large 
volumes of complex data that would be impossible for humans 
and enables pattern recognition and generation of highly 
accurate predictive models that cannot be found using statis-
tical analysis. There are three main machine learning algo-
rithms: supervised, unsupervised, and reinforcement learning. 
Supervised learning uses input-output pairs or labeled data to 
train a model to produce a function. It enables the model to 
predict future outcomes from being trained on past data.  
A support vector machine (SVM) is one of the most widely used 
supervised learning models that can be applied to problems 
such as classification and regression, and it is a learning 
method that classifies a population into two classes and deter-
mines which one the unknown data belong to. In this study, 
we attempted to predict G-LOC within 5 s after the onset of 

high +Gz by using an SVM with age, height, weight, with/
without anti-G suit, +Gz level, OxyHb, and cerebral deoxyhe-
moglobin concentration (DeoxyHb) as explanatory variables.

METHODS

Subjects
Approval for this study was obtained from the JASDF Human 
Ethics Committee, the Aeromedical Laboratory. The subjects 
were advanced flight course trained students who participated 
in JASDF centrifuge training from 2008 to 2012. An informed 
consent form was signed by each of the subjects. We classified 
subjects into G-LOC occurrence or nonoccurrence according 
to their centrifuge training results. There was an imbalance 
between the numbers of subjects with G-LOC occurrence and 
without G-LOC occurrence. Therefore, subjects with G-LOC 
occurrence and without G-LOC occurrence were sampled an 
equal number using a random sampling. The subjects were 124 
healthy men [mean (SD) age, 24.3 (1.8) yr]. The numbers of the 
subjects with and those without G-LOC occurrence during the 
+Gz exposure conditions were 17 in each group for +6 Gz, 31 in 
each group for +7 Gz, and 14 in each group for +8 Gz.

Procedure
The current study involved prediction of G-LOC during cen-
trifuge training. The JASDF Aeromedical Laboratory Centri-
fuge (radius of 7.6 m) at Iruma Air Base, Saitama, Japan, was 
used for the centrifuge training. The JASDF has eight centri-
fuge profiles for advanced flight course training (Profiles 
1–8).10 G-LOC occurs more frequently in Profiles 2 and 6 
(Fig. 1) among the centrifuge profiles. In Profile 2, after bring-
ing the centrifuge to a +1.4-Gz idle run condition, subjects 
without an anti-G suit were first exposed to +4 Gz at an onset 
rate of +1 Gz · s−1 for 15 s and then to +5 Gz for 10 s, +6 Gz for 
8 s, and +7 Gz for 8 s. There was a 1-min rest plateau of the 
+1.4-Gz idle run condition between the G pulses. In Profile 6, 
after bringing the centrifuge to a +1.4-Gz idle run condition, 
subjects with an anti-G suit were exposed to sustained +8 Gz 
with onset rates of +6 Gz · s−1 for 15 s. All subjects performed 
an anti-G straining maneuver during +Gz exposures in Pro-
files 2 and 6. In this study, the following centrifuge conditions 
were analyzed: 1) during +6 Gz in Profile 2 (+6 Gz, onset rate 
of +1 Gz · s−1, without an anti-G suit) (+6 Gz); 2) during +7 Gz 
in Profile 2 (+7 Gz, onset rate of +1 Gz · s−1, without an anti-G 
suit) (+7 Gz); and c) during +8 Gz in Profile 6 (+8 Gz, onset 
rate of +6 Gz · s−1, with an anti-G suit) (+8 Gz).

During each of the +Gz exposure conditions, OxyHb and 
DeoxyHb were recorded by using a NIRO-150G near-infrared 
spectrophotometer (Hamamatsu Photonics K.K., Shizuoka, 
Japan). The methods used have been described previously.5 The 
optodes (light source and light detector) in a specialized rubber 
holder were set at a constant distance of 4.0 cm apart on the left 
forehead with avoidance of temporal muscle regions. Data were 
logged every 0.5 s during the G exposure. Baseline values of 
OxyHb and DeoxyHb were obtained as average values over a 
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30-s period before +Gz exposure in each profile. During this 
period, the subjects were still and quiet on the seat in the centri-
fuge gondola waiting to run.

An SVM is a widely used supervised machine learning algo-
rithm. It can generalize between two different group classifica-
tions. SVMs include linear SVMs and nonlinear SVMs.

A linear SVM is used for linearly separable data. For exam-
ple, as shown in Fig. 2, suppose that the input space contains 
two classes of training data, black circles and white circles. If the 
training data are linearly separable, then the decision boundary 
separating hyperplanes of the two classes will be represented by 
the following equation. Superscript T denotes the transpose of 
the vector.

+ =w x b 0.T

The combination of w and b that defines the decision bound-
ary is not uniquely determined but exists infinitely. In other 
words, SVM training can be rephrased as the problem of finding 
w and b that will give the best generalization performance from 
the training data. However, a classifier must not only be able to 
correctly identify known training data, but also have the gener-
alization capability to correctly identify against unknown data. 
Therefore, the distance between the decision boundary and the 
nearest known training data point from the decision boundary 
is considered to account for the generalization performance for 
unknown data. This distance is called the margin. Choosing a 
decision boundary with a large margin is more likely to correctly 

classify unknown data; that is, SVM is a method for defining  
the decision boundary from given training data in a way that 
maximizes the margin. The solution of the problem for w and b, 
such that the margin is maximized, can be attributed to the opti-
mization problems of a convex quadratic function, subject to 
linear constraints, and the uniqueness of the solutions holds. 

Fig. 1.  Profiles of centrifuge training in the Aeromedical Laboratory, Japan Air Self-Defense Force (advanced training 2 and 6). In this study, the following  
centrifuge training conditions were analyzed: A) during +6 Gz in Profile 2 (+6 Gz, onset rate of 1 Gz · s

−1, without an anti-G suit); B) during +7 Gz in Profile 2 (+7 Gz, 
onset rate of +1Gz · s

−1, without an anti-G suit); and C) during +8 Gz in Profile 6 (+8 Gz, onset rate of +6 Gz · s
−1, with an anti-G suit) (circled in dashed lines).

Fig. 2.  Test data in the feature space and the decision boundary. The margin 
is the distance between the decision boundary and the closest data points.
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The vector from the decision boundary to the nearest training 
data point thus obtained can be considered as supporting the 
optimal decision boundary. These are called support vectors 
and the algorithm is, therefore, called SVM. The solid line in 
Fig. 2 shows the decision boundary for generalization between 
two different group classifications of the training data. The 
dashed lines on both sides indicate the range from the deci-
sion boundary. SVM classification includes hard margin 
SVM, which finds the decision boundary under conditions 
that allow zero errors for the training data, and soft margin 
SVM, which finds the decision boundary under constraints 
that tolerate some errors using an added penalty term (box 
constraints). In practice, soft margin SVMs are often used 
because the training data may not be completely linearly sep-
arated and the generalization performance of hard margin 
SVMs might be reduced due to overfitting.

In Fig. 2, the training data could be linearly separated and 
a decision boundary separating the two classes could there-
fore be obtained. The soft-margin SVM can also be used to 
find a linear decision boundary even if it is affected by noise 
or other factors. However, the linear SVM using a linear deci-
sion boundary cannot provide sufficient generalization 

performance when the data of both classes are complexly dis-
tributed in the input space. In the nonlinear SVM, a nonlin-
ear function is used for mapping the data of the input space 
to a higher dimensional feature space in which a linear sepa-
rating hyperplane can be found. The decision boundary is 
then defined in this feature space. In Fig. 3A, it is not possible 
to define the decision boundary separating the hyperplanes 
of the two classes. As a solution to this problem, the feature 
data sets are nonlinearly transformed into a higher dimen-
sion. In this space, the separating hyperplane may be defin-
able (Fig. 3B). The separating hyperplane found in the new 
space corresponds to a nonlinear decision boundary in the 
original space (Fig. 3C). Nonlinear functions that are often 
used to map training data are Gaussian and polynomial ker-
nel functions. Nonlinear SVMs have high generalization per-
formance for data that cannot be linearly separated.

In the present study, three SVM algorithms were used: linear 
soft-margin SVM (LSVM), nonlinear SVM Gaussian kernel 
function (GSVM), and polynomial kernel function (PSVM), 
for each of which 10 classifiers were built every 0.5 s from the 
onset of high +Gz exposure (Classifiers 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 
3.5, 4.0, 4.5, and 5.0).

Fig. 3.  Principle of a nonlinear SVM. A) Test data sets in the input space are not linearly separable. B) Feature data sets are nonlinearly transformed into a  
higher dimension. In this space, the separating hyperplane may be definable. C) Decision boundary in the input space.
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SVM classifiers were built with G-LOC occurrence or non-
occurrence as response variables. Explanatory variables for the 
SVM were age (yr), height (cm), weight (kg), with or without an 
anti-G suit (categorical data), +Gz level at 0–5.0 s, OxyHb at 
0.0–5.0 s, and DeoxyHb at 0.0–5.0 s. The number of items in 
each classifier was as follows: Classifier 0.5 s, 10; Classifier 1.0, 
13; Classifier 1.5, 16; Classifier 2.0, 19; Classifier, 2.5, 22; 
Classifier 3.0, 25; Classifier 3.5, 28; Classifier 4.0, 31; Classifier 
4.5, 34; and Classifier 5.0, 37. For example, in Classifier 1.0, the 
13 items were: 1) age; 2) height; 3) weight; 4) with or without an 
anti-G suit; 5) G values at 0, 6) at 0.5, and 7) at 1.0 s; OxyHb at 8)  
0, 9) 0.5, and 10) 1.0 s; and DeoxyHb at 11) 0, 12) 0.5, and 13) 
1.0 s. There was a +1.4-Gz idle run condition in exposure pro-
files. Thus, the +Gz level was taken as a value every 0.5 s, start-
ing at +1.4 Gz (0 s = +1.4 Gz).

We consider it is technically feasible to determine the rates 
of changes in OxyHb and DeoxyHb in real time. However, we 
are considering a method using commercial products. The 
NIRS system currently in our possession does not have the 
capability to calculate rates of change in real time. In addition, 
to the best of our knowledge, there is currently no commer-
cially available NIRS system that is capable of calculating rates 
of change in real time. In this study, we did not use calculated 
data such as the rates of changes in OxyHb and DeoxyHb and 
we used data as output from NIRS, such as OxyHb and 
DeoxyHb, because we want to make G-LOC forecasting in real 
time in the future.

In the present study, a leave-one-out cross validation was 
used to assess the performance of the classifiers. In the 
leave-one-out cross validation, one example is extracted from 
the sample group and used as test data, while the rest is used as 
training data. This is a method in which all data are repeatedly 

validated so that they become test data one by one. This study 
was conducted on 124 data points (123 data points were used as 
training data and the remaining 1 data point was used as test 
data) for a total of 124 times (Fig. 4).

The performance of the classifiers built by the training data 
was evaluated using the test data. We evaluated the performance 
of the classifiers from each of the perspectives of precision, 
recall, and accuracy. Table I shows a confusion matrix.When the 
classifiers built in this study were given unknown test data, the 
prediction output by the classifiers was one of the following four 
types: 1) true positive in cases in which the classifiers predicted 
G-LOC would occur and G-LOC actually did occur; 2) false 
positive in cases in which the classifiers predicted G-LOC would 
occur, but G-LOC did not actually occur; 3) true negative in 
cases in which the classifiers predicted G-LOC would not occur 
and G-LOC actually did not occur; and 4) false negative in cases 
in which the classifiers predicted G-LOC would not occur, but 
G-LOC actually did occur. Precision was defined as the percent-
age of subjects who experienced G-LOC in subjects who were 
predicted to experience G-LOC. Recall was defined as the per-
centage of subjects who were predicted to experience G-LOC in 
subjects who experienced G-LOC. Accuracy was defined as the 
percentage of all subjects who were correctly predicted to expe-
rience or not to experience G-LOC.

The performance of classifiers depends on the hyperpa-
rameters. For this reason, optimization of the hyperparame-
ters was repeated 500 times for each classifier using Bayesian 
optimization to maximize using accuracy as an index, and the 
optimized results were used as the respective performance 
evaluation. The respective optimized hyperparameters are as 
follows: LSVM, cost of regularization; GSVM, cost of regular-
ization and kernel coefficient parameter gamma; and PSVM, 
cost of regularization, kernel coefficient parameter gamma, 
and degree of polynomial.2 The training data were scaled 
beforehand by normalization and standardization. This 
ensures that they would not be affected by differences in the 
scale of the explanatory variables such as the magnitude of 
the value.

The permutation feature importance (PFI) is a method for 
evaluating how much an explanatory variable contributes to 
the predictive accuracy of a model. PFI is determined by the 
importance of each explanatory variable depending on how 
much the prediction accuracy drops; in other words, increase 
in the prediction error (PE) of the model, when a single 
explanatory variable is randomly shuffled, which breaks the 
relationship between the explanatory variable and the true 
outcome. We used PFI to evaluate the explanatory variables in 
high accuracy classifiers with the highest performance in the 

Fig. 4.  Leave-one-out cross validation. This study was conducted on 124 
data points: 123 data points were used as training data and the remaining  
1 data point was used as test data.

Table I.  Confusion Matrix.

PREDICTED G-LOC

OBSERVED G-LOC

PRESENT ABSENT
Present True Positive (TP) False Positive (FP)
Absent False Negative (FN) True Negative (TN)

Precision = TP/(TP+FP); Recall = TP/(TP+FN); Accuracy = (TP+TN)/(TP+FP+TN+FN).
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three SVM algorithms used in this study. The classifiers were 
built and their performance evaluation and optimization were 
performed using Python 3.915 and its machine learning pack-
age scikit-learn 1.1.1.13

Statistical Analysis
The results are expressed as means ± SD. Data on age, height, 
and weight in the G-LOC group and Non-G-LOC group in +6 
Gz, +7 Gz, and +8 Gz were compared using Student’s t-test. We 
also used a two-way mixed design analysis of variance to exam-
ine changes in OxyHb and DeoxyHb in +6 Gz, +7 Gz, and +8 
Gz, with or without G-LOC (between subjects) and G-loading 
time (within subjects) as two factors. The equivariance of 
within-subject factors was tested for Mauchly’s sphericity, and if 
sphericity could not be assumed, the degrees of freedom were 
adjusted for Greenhouse-Geisser. Multiple comparison tests 
were performed using the Bonferroni method. The levels of 
each factor are: 1) G-LOC occurrence: 2 levels (G-LOC group 
and Non-G-LOC group); and 2) +Gz loading time: 11 levels 
[0–5 s (0.5-s intervals)]. Differences were considered significant 
at P < 0.05 in all analyses. All statistical analyses were performed 
using SPSS (version 24.0, Chicago, IL, USA).

RESULTS

The times from onset of high +Gz load to onset of G-LOC  
were 10.4 ± 1.4 s (minimum–maximum: 8.5–12.5) at +6 Gz, 
10.6 ± 1.8 s (6.0–13.5) at +7 Gz, and 7.8 ± 1.1 s (6.0–9.5) at +8 Gz. 
There were no significant differences (n.s.) in age (+6 Gz: 
G-LOC group, 24.4 ± 0.5 vs. Non-G-LOC, 24.8 ± 0.5; t = −0.624, 
P = 0.537; +7 Gz: 24.1 ± 0.3 vs. 24.0 ± 0.3; t = 0.306, P = 0.761; +8 
Gz: 23.8 ± 0.4 vs. 25.1 ± 0.5; t = −1.948, P = 0.063), height (+6 Gz: 
173.1 ± 1.0 vs. 173.5 ± 1.1; t = −0.269, P = 0.789; +7 Gz: 172.0 ± 0.9 
vs. 170.6 ± 0.9; t = 1.149, P = 0.255, +8 Gz: 173.1 ± 1.6 vs. 
173.4 ± 1.9; t = −0.114, P = 0.910), or weight (+6 Gz: 65.0 ± 1.2 
vs. 67.8 ± 1.4; t = −1.480, P = 0.149; +7 Gz: 65.1 ± 1.3 vs. 64.3 ± 1.1; 
t = 0.483, P = 0.631; +8 Gz: 66.0 ± 2.7 vs. 69.5 ± 2.4; t = −0.972,  
P = 0.340) between the G-LOC group and Non-G-LOC group 
in +6 Gz, +7 Gz, and +8 Gz, respectively.

For OxyHb, there was no interaction between G-LOC occur-
rence and G-loading time in +6 Gz [F(2.036, 65.164) = 0.577, P = 
0.567] or +7 Gz [F(2.555, 153.279) = 0.161, P = 0.897]. The main 
effect of G-LOC occurrence was significant in +6 Gz [F(1, 32) = 
4.175, P = 0.049] and the G-LOC group had lower OxyHb than 
that in the Non-G-LOC group, but the difference was not signif-
icant in +7 Gz [F(1, 60) = 0.396, P = 0.532]. The main effect of 
G-loading time was significantly different in OxyHb in +6 Gz 
[F(2.036, 65.164) = 53.912, P < 0.001] and +7 Gz [F(2.555, 
153.279) = 112.730, P < 0.001]. In the results of multiple compar-
ison tests, OxyHb was significantly lower at all time points from 
1.5 s onward compared to that at 0 s (P < 0.05) in +6 Gz and was 
significantly lower at all time points from 2.0 s compared to that 
at 0 s (P < 0.05) in +7 Gz. There was a significant interaction 
between G-LOC occurrence and G-loading time in OxyHb in +8 
Gz [F(1.717, 44.637) = 5.465, P = 0.010]. Because a significant 

interaction was observed, a comparison of OxyHb between the 
G-LOC group and the Non-G-LOC group at each G-loading 
time showed that OxyHb was significantly higher in the G-LOC 
group than in the Non-G-LOC group at 0 s [F (1, 26) = 4.270, P = 
0.049], with no significant differences at other G-loading times. 
The main effect of G-loading time was significantly different in 
OxyHb in the G-LOC group and the Non-G-LOC group at +8 
Gz. The G-LOC group at +8 Gz had significantly lower OxyHb at 
all other G-loading times compared to that at 0 s (P < 0.05). In the 
Non-G-LOC in +8 Gz group, OxyHb was significantly lower at 
all +Gz-loading times after 1.0 s than at 0 s (P < 0.05).

For DeoxyHb, there was no interaction between G-LOC 
occurrence and G-loading time at +6 Gz [F(1.774, 56.776) = 
0.273, P = 0.736], +7 Gz [F(2.328, 139.664) = 0.345, P = 0.741], 
and +8 Gz [F(2.307, 59.987) = 1.796, P = 0.170]. The main effect 
of G-LOC occurrence was significant in +8 Gz [F(1, 26) = 
17.382, P < 0.001] and the G-LOC group had higher DeoxyHb 
than that in the Non-G-LOC group, but the difference was not 
significant at +6 Gz [F(1, 32) = 0.285, P = 0.597] or +7 Gz [F(1, 
60) = 0.386, P = 0.537]. The main effect of G-loading time was 
significantly different in DeoxyHb at +6 Gz [F(1.774, 56.776) = 
16.515, P < 0.001], +7 Gz [F(2.328, 139.664) = 22.166, P < 
0.001], and +8 Gz [F(2.307, 59.987) = 20.108, P < 0.001]. In the 
results of multiple comparison tests, DeoxyHb was significantly 
higher at all time points from 2.0 s onward compared to that at 
0 s at +6 Gz and +7 Gz (P < 0.05) and was significantly higher at 
all time points compared to that at 0 s in +8 Gz (P < 0.05).

Table II shows precision, recall, and accuracy for Classifiers 
0.5–5.0 using LSVM, GSVM, and PSVM. For LSVM, the accu-
racy exceeded 60% from Classifier 3.0 onwards. It leveled off 
between Classifiers 3.0 and 5.0 and ranged from 60.5–64.5%. The 
precision of Classifiers 3.0–5.0 ranged from 61.0–64.4% and recall 
ranged from 58.1–66.1%. GSVM showed superior and more con-
sistent generalization results among the three types of SVM tested 
in this study. The accuracy exceeded 60% from Classifier 2.5 
onwards. It leveled off between Classifiers 2.5 and 5.0 and ranged 
from 63.7–65.3%. The precision of Classifiers 2.5–5.0 ranged 
from 62.7–65.1% and recall ranged from 62.9–71.0%. PSVM 
showed accuracy of over 60% at Classifier 2.0, the earliest stage of 
the three types of SVM built into this study. However, it was not 
stable for later classifiers, with accuracy from 57.3–63.7% for 
Classifiers 2.0–5.0. The precision of Classifiers 2.0–5.0 ranged 
from 56.0–62.7% and recall ranged from 59.7–69.4%.

The importance of explanatory variables in Classifiers 
2.5–5.0 with an accuracy of over 60% among GSVMs that 
showed superior generalization results in this study was evalu-
ated using PFI. The results showed that age (PE; 0.17 ± 0.01), 
height (PE; 0.24 ± 0.00) and immediate OxyHb (e.g., if Classifier 
2.5, OxyHb at 2.5 s) (PE; 0.25 ± 0.03) were more important than 
the other explanatory variables (PE; 0.01 ± 0.01).

DISCUSSION

G-LOC countermeasures such as the anti-G suit and anti-G 
straining maneuvers have reduced the number of G-LOC cases, 
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but G-LOC still occurs in some cases. Many efforts have been 
made to try to detect and predict G-LOC in flight. However, 
technology is not yet established. It has been suggested that 
G-LOC does not occur during the FBP that lasts for approxi-
mately 5–6 s during high +Gz exposure.8,16 In this study, G-LOC 
occurred on average 7.8–10.6 s from the onset of high +Gz 
exposure and occurred at 6 s or more in all cases. The time from 
onset of high +Gz load to onset of G-LOC at +8 Gz was 7.8 s and 
is more reflective of what pilots will experience in the real world 
as they will experience rapid G onset.It would be extremely use-
ful for aviation safety and accident prevention if G-LOC could 
be predicted within the several seconds during which brain 
function is maintained. We aim to apply the classifiers to trigger 
the activation of a G-LOC warning light and/or sound and 
automatic recovery systems during centrifuge training and in 
flight in the future. The Automatic Ground Collision Avoid-
ance System, developed by Lockheed Martin and others, pro-
vides a warning on the heads-up display if the system predicts a 
collision with the ground and automatically activates the sys-
tem if there is no pilot response.6 For example, integration into 
such a device could alert the pilot before the pilot becomes 
unresponsive, which might allow the pilot to perform avoid-
ance maneuvers (e.g., reduce high +Gz exposure) or allow auto-
matic avoidance maneuvers more quickly, albeit for a short 
period of time (e.g., if the prediction of G-LOC occurs at 2.5 s 
and G-LOC occurs 5 s later at the 7.8-s mark for rapid G onset).

In the present study, three types of SVMs were used: LSVM, 
GSVM, and PSVM, for each of which 10 classifiers every 0.5 s 
from the onset of high +Gz exposure were built. GSVM per-
formed the best in terms of accuracy. The accuracies were as 
follows: Classifier 2.5, 64.5%; Classifier 3.0, 63.7%; Classifier 
3.5, 65.3%; Classifier 4.0, 64.5%; Classifier 4.5, 64.5%; and 
Classifier 5.0, 64.5%. These results suggest that it may be possi-
ble to predict whether G-LOC will occur with an accuracy rate 
of approximately 65% at 2.5 s from the onset of high +Gz expo-
sure. On the other hand, as the number of items of explanatory 
variables increased over time, accuracy is expected to improve. 
However, it leveled off up to Classifier 5.0 s. A very common 
way to evaluate the performance of classifiers in an SVM is to 
measure precision, recall, and accuracy. The precision is the 

percentage of G-LOC predictions that came true, recall is the 
percentage of G-LOCs predicted without oversight, and accu-
racy is the percentage of correct predictions of whether G-LOC 
occurred. If we were using statistical analysis to predict this, we 
would have P-values, correlation coefficients, etc. to help us 
determine if in fact our predictions were accurate and signifi-
cant. In contrast, determination of good or bad precision, recall, 
and accuracy in SVMs is subjective. We believe, however, that 
50% may be one baseline in this study. This is because when the 
data are perfectly balanced, as in this study in which subjects for 
the G-LOC and Non-G-LOC groups were sampled in equal 
numbers, always predicting “G-LOC” or “Non-G-LOC” will 
yield an accuracy of 50%. In this case, if the classifiers learn 
nothing useful, the accuracy is likely to be around 50% and any-
thing above 50% is considered better than a random guess. The 
results in this study exceed this 50%. However, accuracy, repeat-
ability, and precision of 65% are not good enough for opera-
tional purposes and there is a need for further improvement. 
There is a tradeoff between precision and recall. If one increases, 
the other decreases. Precision and recall cannot be increased 
simultaneously. If there is concern about false positives, preci-
sion should be emphasized, and if there is concern about false 
negatives, recall should be emphasized. When considering 
applications such as triggering automatic recovery systems, 
accuracy of around 65% for the classifiers would result in many 
malfunctions. This would make it impractical. It is considered 
important from a safety perspective to prevent oversight of 
G-LOC in centrifuge training and flight training. In terms of 
recall, as with accuracy, G-LOCs were predicted by Classifier 
2.5 without oversight at approximately 65%, and this remained 
unchanged up to Classifier 5.0. In principle, the goal is to 
increase the accuracy and lead to practical applications, but if it 
is permissible for the device to malfunction to some extent 
during centrifuge training and flight training, such as a warning 
tone, a classifier that emphasizes recall may be an option. In any 
case, the performance of the classifier needs to be improved 
further for practical applications. The performance of an SVM 
depends on the amount of training data. Further accumulation 
of training data may improve performance. There is also the 
expectation that performance will be improved in the future by 

Table II.  Classifier Performance.

CLASSIFIERS

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
Linear Soft-Margin SVM
  Precision (%) 52.2 54.0 55.6 54.0 54.2 61.0* 63.3* 62.3* 64.4* 64.1*
  Recall (%) 56.5 54.8 56.5 54.8 51.6 58.1 61.3* 61.3* 61.3* 66.1*
  Accuracy (%) 52.4 54.0 55.6 54.0 54.0 60.5* 62.9* 62.1* 63.7* 64.5*
Nonlinear SVM Gaussian Kernel Function
  Precision (%) 61.4* 54.7 57.4 58.3 62.9* 62.7* 65.1* 63.2* 64.5* 65.0*
  Recall (%) 43.5 56.5 56.5 56.5 71.0* 67.7* 66.1* 69.4* 64.5* 62.9*
  Accuracy (%) 58.1 54.8 57.3 58.1 64.5* 63.7* 65.3* 64.5* 64.5* 64.5*
Nonlinear SVM polynomial kernel function
  Precision (%) 44.6 55.0 54.2 62.7* 61.5* 62.5* 62.3* 59.2 59.7 56.0
  Recall (%) 46.8 53.2 83.9* 59.7 64.5* 64.5* 69.4* 67.7* 64.5* 67.7*
  Accuracy (%) 44.4 54.8 56.5 62.1* 62.1* 62.9* 63.7* 60.5* 60.5* 57.3

*Indicates > 60%.
SVM = support vector machine.
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further increases in the number of explanatory variables for the 
SVM. G-LOC results from a reduced blood supply from the 
heart to the brain. Therefore, the performance of the classifier 
could be enhanced by adding physiological indicators such as 
an electroencephalogram, blood pressure, and heart rate to the 
explanatory variables. In addition, there is scope to consider 
whether machine learning other than SVMs, such as Random 
Forests, can be applied.

There has been much discussion about the associations of 
physiological variables such as age, height, weight, and risk with 
G-LOC.9 In the present study, statistical analysis did not show an 
association between age, height, or weight and the risk of G-LOC, 
but the SVM suggested that age and height were relatively 
important explanatory variables compared to the other explana-
tory variables. Also, in OxyHb and DeoxyHb, statistical analysis 
did not show a constant trend in +6 Gz, +7 Gz, and +8 Gz, but the 
SVM suggested that immediate OxyHb was a relatively import-
ant explanatory variable compared to the other explanatory vari-
ables. These results might indicate that an SVM has the potential 
to find relationships between physiological variables and G-LOC 
that are not found by statistical analysis and thus predict G-LOC.

This study was conducted by postprocessing and analyzing 
previously acquired data. In the future, easy attachment of mea-
surement equipment and real-time data analysis will be required 
for centrifuge training and actual flight applications. Achievement 
of this goal will require reduction in the size and weight and rug-
gedization of measuring equipment as well as improved perfor-
mance such as greater computer processing speed. Various 
wearable devices such as heart rate monitors and electrocardio-
graphs in wristband and clothing forms have been developed in 
recent years. Moreover, the U.S. Air Force has developed an inte-
grated cockpit sensing system that enables real-time monitoring 
of the pilot’s physiological indicators, such as blood oxygen satu-
ration, blood perfusion, heart rate, heart rate variability, esti-
mated core temperature, skin temperature, respiration rate, and 
work of breathing, and the cockpit environment during actual 
flight.1 We look forward to the development and popularization 
of equipment that is wearable and stable in the harsh aviation 
environment and which enables analysis in real time.

In conclusion, three types of SVM algorithms were used: 
LSVM, GSVM, and PSVM, for each of which 10 classifiers were 
built every 0.5 s from the onset of high +Gz exposure (Classifiers 
0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, and 5.0) and their perfor-
mance was evaluated. GSVM showed the most stable perfor-
mance of the three algorithms tested in this study, with accuracy 
rates of 63.7–65.3% after Classifier 2.5. Analysis of a larger num-
ber of cases and factors to enhance accuracy may be needed to 
apply those classifiers in centrifuge training and actual flight.
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