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R e s e a R c h  a R t i c l e  

Predictive Biomathematical Modeling Compared to  
Objective Sleep During COVID-19 Humanitarian Flights
Jaime K. Devine; caio R. Garcia; audrey s. simoes; Marina R. Guelere; Bruno de Godoy; Diego s. silva;  
Philipe c. Pacheco; Jake choynowski; steven R. hursh

 BACKGROUND: Biomathematical modeling software like the sleep, activity, Fatigue, and task effectiveness (saFte) model and 
Fatigue avoidance scheduling tool (Fast) help carriers predict fatigue risk for planned rosters. the ability of a 
biomathematical model to accurately estimate fatigue risk during unprecedented operations, such as cOViD-19 
humanitarian ultra-long-range flights, is unknown. azul cargo express organized and conducted five separate 
humanitarian missions to china between May and July 2020. Prior to conducting the missions, a sleep-prediction 
algorithm (autosleep) within saFte-Fast was used to predict in-flight sleep duration and pilot effectiveness. here 
we compare autosleep predictions against pilots’ sleep diary and a sleep-tracking actigraphy device (Zulu watch, 
institutes for Behavior Resources) from azul’s cOViD-19 humanitarian missions.

 METHODS: Pilots wore Zulu watches throughout the mission period and reported sleep duration for their in-flight rest periods 
using a sleep diary. agreement between autosleep, diary, and Zulu watch measures was compared using intraclass 
correlation coefficients (icc). Goodness-of-fit between predicted effectiveness distribution between scenarios was 
evaluated using the R2 statistic.

 RESULTS: a total of 20 (N = 20) pilots flying across 5 humanitarian missions provided sleep diary and actigraphy data. icc and  
R2 values were >0.90, indicating excellent agreement between sleep measures and predicted effectiveness distribution, 
respectively.

 DISCUSSION: Biomathematical predictions of in-flight sleep during unprecedented humanitarian missions were in agreement with 
actual sleep patterns during flights. these findings indicate that biomathematical models may retain accuracy even 
under extreme circumstances. Pilots may overestimate the amount of sleep that they receive during extreme flight-duty 
periods, which could constitute a fatigue risk.
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In January 2020, the World Health Organization declared a 
public health emergency of international concern due to the 
spread of the Coronavirus Disease 2019 (COVID-19), caused 

by the Severe Acute Respiratory Syndrome Coronavirus 2 
(SARS-CoV-2).14 The outbreak of COVID-19 has forced many 
industries and governments around the world to adapt to an 
unprecedented global disaster. The commercial aviation industry 
in particular has been impacted by COVID-19.2,17 Airlines had 
to reduce passenger flights due to global travel restrictions and 
decreased demand but have also been thrust into an essential 
humanitarian role to facilitate repatriation and cargo transport.22

One strategy that has been suggested for a post-COVID-19 
era is the adoption of ultra-long-range (ULR) operations. Defined 

as flights which are longer than 14.5 h in length, ULR operations 
strive to connect cities in far-reaching corners of the globe.2  
In the context of COVID-19, ULR operations could help limit 
exposure since passengers would not have layovers at busy 
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international hubs and could maintain greater physical distance 
onboard due to the configuration of an aircraft designed for  
ULR service.2

While air operators need to adapt strategically to circumvent 
the dual threat COVID-19 poses to revenue and public health, 
operational safety risks which existed before 2020 have not dis-
appeared and must be properly mitigated in any flight plans 
specific to COVID-19 or beyond. Pilot fatigue constitutes a 
well-acknowledged threat to aviation safety,6,8,20 and regulatory 
bodies across the globe have imposed rules to prevent pilots 
from flying before they have had sufficient time to recover from 
fatigue associated with prolonged air travel, including the use of 
biomathematical models. Biomathematical models, such as the 
Sleep, Fatigue, and Task Effectiveness (SAFTE) model, are used 
to predict fatigue and optimize shift schedules in aviation10,15 
and can help forecast fatigue risk in COVID-19 or post-
COVID-19 ULR operations.

The benefit of biomathematical models is that they allow for 
the identification of rotations, schedule patterns, and time peri-
ods with high fatigue risk and allow for targeted mitigation in 
those areas. Many models incorporate a sleep estimator which 
can predict sleep patterns during a proposed schedule accu-
rately compared to individuals’ actual sleep.3,15 However, sleep 
estimators are parameterized based on previously collected 
sleep data and the generalizability of sleep predictions across 
operations is unknown.11,19 The ability of a sleep estimator to 
accurately predict sleep patterns during COVID-19-related 
ULR flight operations has not been previously investigated.

Airlines were not afforded the luxury of a priori comparison 
of sleep estimators to actual sleep patterns when executing 
COVID-19 pandemic-related operations, but could collect sleep 
data during operations to allow for post hoc analysis. This was 
the case with Brazil-based Azul Airlines. The first confirmed case 
of COVID-19 in Brazil occurred in February 2020, but there 
were over 177,000 cases across the nation by mid-May.7 Azul 
Airlines Human Factors team used the SAFTE model’s Fatigue 
Avoidance Scheduling Tool (FAST) to forecast an estimate of 
pilot fatigue and effectiveness using the software’s sleep estimator, 
known as AutoSleep, prior to conducting five separate humani-
tarian missions to China between May and July 2020.

The purpose of Azul’s humanitarian missions was to bring 
respirators, COVID rapid tests, and medical supplies from main-
land China back to Brazil. Azul Airlines had not previously con-
ducted flights to China, and the pilots were unfamiliar with the 
destination airports within China. The round-trip flights 
required 30 h of in-flight travel. The flights were designed to be 
carried out with two relay crews consisting of four pilots each, for 
a total mission crew of eight pilots. The crews were organized  
so that all pilots would be available to work during any flight leg, 
that each pilot was afforded an in-flight sleep opportunity, 
and that none of the pilots would need to fly extra time.

During missions, pilots wore a validated wrist actigraph, 
the Zulu watch (Institutes for Behavior Resources, Baltimore, 
MD, USA),4 and reported the sleep duration for their in-flight 
rest periods using a sleep diary. The goal of the current analy-
sis was to compare the in-flight sleep patterns predicted by 

SAFTE-FAST’s AutoSleep feature against pilots’ self-report 
sleep diary and compare AutoSleep-predicted sleep to objec-
tive sleep duration as measured by actigraphy during the  
airline’s COVID-19 humanitarian missions.

METHODS

Subjects
Subjects were recruited through Azul Airlines Human Factors 
Safety Department. Subjects provided written informed consent 
for their participation. All mission crew were considered eligible 
for inclusion regardless of gender, ethnicity, age (over 18), sleep 
habits, or health status. Secondary use of de-identified data for 
research purposes was approved by the Salus Institutional 
Review Board and these analyses were conducted in accordance 
with the Declaration of Helsinki.

Materials
Biomathematical Modeling Software. SAFTE-FAST is a two-
step, three-process model that estimates sleep patterns around 
work duties and then estimates performance levels. The three 
processes involved are circadian function, homeostatic sleep 
reservoir, and sleep inertia. SAFTE-FAST scenarios are project 
files which visualize predicted performance metrics such as 
effectiveness and sleep reservoir against work and sleep events. 
AutoSleep is the sleep estimator in SAFTE-FAST that uses 
information about work events, time of day, and prior sleep to 
predict average sleep decisions under operational constraints. 
SAFTE-FAST is the brand name of fatigue risk management 
system software provided by the Institutes for Behavior Resources 
to a variety of operational organizations, including Azul Airlines.

Sleep Diary. Pilots were asked to complete a paper diary indi-
cating when and for how long they slept in flight during flight 
duty periods (FDPs). Pilots were also asked to indicate the qual-
ity of their sleep. Paper diaries were returned to airline research-
ers at the completion of the mission.

Actigraph. The Zulu watch is a commercial actigraph that has 
been validated against polysomnography and another actigraphy 
device for sleep-wake determination.4 The Zulu watch automati-
cally determined sleep on-wrist using a proprietary sleep deter-
mination algorithm. Sleep data are scored in real time on the 
Zulu watch without researcher intervention. The most recent 
data is stored on the device as sleep events; the Zulu watch can 
store up to 80 sleep events while on-wrist. The Zulu watch has 
off-wrist detection to help differentiate between sleep periods 
and off-wrist periods, can detect multiple sleep episodes per day, 
and can detect naps as short as 20 min. More information about 
the Zulu watch device can be found in Devine et al.4

Procedure
A separate SAFTE-FAST project file was created for each human-
itarian mission (Missions 1–5). Trip pairings were modeled in 
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SAFTE-FAST 4.0 using Azul’s default setup package. Planned 
work sleep event rules (for example, in-flight sleep) were manu-
ally entered for each trip to reflect mission specifics. The flights 
were designed to be carried out with two relay crews consisting of 
four pilots each (eight pilots total). The crews were organized so 
that all pilots would be available to work during any flight leg and 
that no one pilot would need to fly extra time. Each mission con-
sisted of four flight legs: 1) an outbound flight from Brazil to a 
layover destination in Europe; 2) a direct flight from Europe to 
China following the outbound layover; 3) a return flight to 
Europe from China; 4) a final flight from Europe to Brazil follow-
ing a return layover. Each flight leg was approximately 12 h; each 
pilot was afforded a 9-h in-flight sleep opportunity during which 
they were not required to crew the aircraft. In-flight rest periods 
were freely chosen by the crew during the mission. Layovers in 
Europe were between 20 to 41 h long. Pilots disembarked during 
layovers and slept in hotel rooms. Turnaround in China ranged 
between 3 to 6 h while supplies were loaded onto the plane. No 
member of the mission crew deplaned during turnaround in 
China. Greater detail about pilot sleep patterns across the mis-
sion are described in Devine et al.5

AutoSleep predicted planned work sleep using an augmen-
tation rule that prohibited work sleep events from occurring 
within 30 min of beginning an FDP or within 90 min of ending 
an FDP. One work sleep event per crewmember was assumed to 
occur during any given FDP. The length of the sleep event was 
computed by subtracting the time when sleep was prohibited 
(120 min) from the total flight duration and then dividing that 
time by two (two crews) and multiplying by 0.75 (75% credit for 
sleep during that opportunity) to reflect aviation guidelines for 
onboard rest.16 No Event Rules were assumed, meaning that 
each Sleep Rule calculation to the specific flights was entered 
manually by airline researchers. Planned work sleep quality was 
set to “Good”, assuming two interruptions per hour that each 
cost 5 min of sleep time, or 50 min of restorative sleep per hour. 
AutoSleep settings for layover periods were set to base time, per 
instructions to pilots that they should maintain a home base 
schedule, i.e., west Brazilian local time (UTC-5). Sleep at hotels 
during layovers was assumed to be “Excellent”, assuming  
60 min of restorative sleep per hour.

Pilots were assigned the Zulu watch (Institutes for Behavior 
Resources, Inc.) in May 2020 prior to COVID-19 support mis-
sions and wore the watches continuously until the completion 
of their mission (between May and July 2020). Crews returned 
the watch to airline researchers directly upon returning to 
Brazil from their mission. Data were downloaded by airline 
researchers using the Zulu Data Extraction application 
(Institutes for Behavior Resources, Version 2.0) and saved as 
.CSV files. Files reported all sleep interval start and end times 
and sleep duration in minutes. CSV files were compiled in Excel 
2013 into a .CSV file which could be imported into SAFTE-
FAST 4.0 and Stata MP15 (StataCorp, College Station, TX, 
USA). Files were manually inspected for data corruption prior 
to inclusion in the dataset. Sleep events were not edited for the 
purposes of these analyses.

Pilots also completed a sleep diary during FDPs. Pilots were 
not asked to complete the sleep diary during layovers or ground 
time in China. All times were reported in Brazilian time. 
Aircrew were instructed to remain on home base Brazilian time 
throughout the mission. The pilots reported the flight leg, duty 
start time, flight time, and the timing, duration, and quality of 
their preflight and in-flight sleep. Subjective sleep quality was 
rated on a 4-point scale as either Poor, Fair, Good, or Excellent 
by pilots. Diary sleep information was manually compiled 
into a .CSV file which could be imported into SAFTE-FAST 4.0. 
Sleep and performance metrics are summarized in Table I.

The original SAFTE-FAST models of COVID-19 humani-
tarian mission flights using AutoSleep were duplicated to pro-
duce two comparison scenarios: 1) explicit sleep scenarios 
based on Zulu watch objective sleep; and 2) explicit sleep sce-
narios based on the subjective sleep diaries to model sleep pat-
terns during mission FDP and AutoSleep during layover 
periods. Both diary and Zulu watch sleep scenarios used sleep 
start time (indicating sleep onset) and sleep end time (indicat-
ing the time of final awakening) to report explicit sleep dura-
tion. The subjective sleep diary scenario adjusted Environment 
settings based on subjective sleep quality ratings, such that 
Excellent sleep assumed no interruptions, or 60 min of restor-
ative sleep per hour, Good assumed two interruptions per hour 
or 50 min of restorative sleep per hour, Fair assumed four 

Table I. Sleep and Performance Metrics.

METRIC NAME DEFINITION
Sleep duration Sleep duration is a measure of the amount of time that crew dedicated to sleep. SAFTE-FAST uses sleep duration from AutoSleep 

estimations or explicit sleep (diary or Zulu watch) to calculate Effectiveness. Sleep duration is expressed in minutes.
Sleep quality The sleep diary allowed pilots to report their subjective sleep quality. Sleep quality is a measure of the crewmember’s satisfaction 

with their sleep. Crew selected from four sleep quality categories based on their personal experience following the sleep event. 
The options were: Excellent, Good, Fair, and Poor.

Sleep environment Sleep environment is a SAFTE-FAST setting option which refers to the potential for interruptions to sleep due to the quality of the 
environment. There are four sleep environment categories which can be selected based on knowledge of the sleep environment. 
Sleep environment quality uses the same labels as sleep quality but may not necessarily represent the crewmember’s subjective 
sleep experience.

Crewing effectiveness Crewing effectiveness is a performance measure computed by SAFTE-FAST for each minute during crewing events. Effectiveness is 
expressed as a percentage (%) scaled to a fully rested person’s normal best performance. The higher the score, the lower the 
fatigue risk.

Effectiveness distribution The distribution of 5% crewing effectiveness bins (e.g., 90–95% effectiveness) across all crewing event time (expressed as a 
percentage). Effectiveness distribution gives an overview of performance across the whole mission period.

Terms and definitions for measures of sleep and performance for the purposes of subsequent analyses.
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interruptions per hour or 40 min of restorative sleep per hour, 
and Poor assumed six interruptions per hour or 30 min of 
restorative sleep per hour. Environment was kept at Excellent 
for all Zulu sleep data, since the watch considers sleep interrup-
tions as awakenings (see Fig. 1) and adjusting the Environment 
setting would result in a falsely low sleep duration.

SAFTE-FAST estimated performance metrics based on the 
crewmembers’ flight schedules and sleep input. Crew sched-
ules were identical across all scenarios within a mission proj-
ect. Therefore, differences in performance metrics are 
assumed to be due to differences in the reporting of sleep (i.e., 
AutoSleep vs. Diary vs. Zulu watch). An example of the three 
sleep scenarios for an individual pilot is depicted in Fig. 1.

As described in Table I, crewing effectiveness is a SAFTE-
FAST output of performance estimation. In SAFTE-FAST, 
effectiveness represents speed of performance on the 
Psychomotor Vigilance Test, scaled as a percent (%) of a fully 
rested person’s normal best performance. Effectiveness 
corresponds to reaction time speed, is highly sensitive to 

fatigue, and correlated with cognitive performance.7,9 It is pos-
sible for effectiveness scores to be greater than 100%. Minimal 
effectiveness during critical phases of flight is considered to be 
77%.18,21 Crewing effectiveness refers to the effectiveness score 
for each work minute over the course of a crewing event. 
SAFTE-FAST commonly reports the distribution of effective-
ness scores by 5% bins (e.g., 90–95%) for scores above 50%. 
Effectiveness scores below 50% are extremely rare during crew-
ing events; for this reason, effectiveness scores in the range of 
0–50% are collapsed into a single bin.

Statistical Analysis
Sleep and performances metrics were exported from SAFTE-
FAST 4.0 as .CSV files. All data were subsequently analyzed 
using Excel 2013 and Stata MP 15. Sleep duration was com-
pared between the three sleep scenarios (AutoSleep, Zulu, and 
Diary) for all mission flight legs using Stata MP 15.1 statistical 
analysis software. Sleep duration per 24-h period during lay-
overs was additionally compared between the AutoSleep and 

Fig. 1. Example comparison between AutoSleep, diary, and Zulu watch SAFTE-FAST scenarios. Example of SAFTE-FAST modeled performance using: A) AutoSleep;  
B) sleep diary; or C) Zulu watch data for one pilot subject. Dates are listed at the top of the graph. Each flight leg is depicted as a black bar with white carets on the 
row marked “Work” which appears beneath the Effectiveness % graph. Sleep events are graphed on the left axis below Effectiveness % and Work events. A) AutoSleep 
(light gray bars) predicted 1 work sleep event with good sleep quality per flight leg. B) Diary times were imported as explicit sleep (dark gray bars). AutoSleep (light 
gray) was used to estimate sleep between flight legs since diaries were only completed for in-flight sleep. C) Zulu watch data was imported as explicit sleep (dark gray 
bars) for the entire mission.
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Zulu scenarios. Statistical significance was assumed at P < 0.05. 
Differences in sleep duration between AutoSleep and sleep 
diary, AutoSleep and Zulu watch, and diary and Zulu watch 
measurements were explored using paired samples t-tests.

Agreement between all three measures of in-flight sleep 
duration was furthermore evaluated using single rater, two-way 
random effects intraclass correlation coefficients (ICC) with 
absolute agreement. ICCs were computed for any flight leg for 
which all three measures (AutoSleep, diary, and Zulu watch) 
were collected. ICC values were classified as poor (< 0.50), 
moderate (0.50–0.75), good (0.75–0.90), or excellent (> 0.90) 
based on established guidelines.12

Minimum, maximum, and average crewing effectiveness 
scores between AutoSleep and sleep diary, AutoSleep and Zulu 
watch, and diary and Zulu watch scenarios were compared 
using paired samples t-tests. The distribution of crewing effec-
tiveness by 5% effectiveness bins were combined in Excel 2013 
to examine effectiveness distribution across all missions. Linear 
regressions examined the difference between AutoSleep predic-
tions of effectiveness distribution compared to sleep diary and 
Zulu watches across all missions. Goodness of fit was evaluated 
using the R2 statistic. An R2 value of 0.5 means that half of the 
variance in the outcome variable is explained by the model.23

RESULTS

Each of Azul’s five humanitarian missions had two relay crews of 
four pilots, for a total of eight pilots per mission. In total,  
40 pilots flew between Brazil and China between May and July 
2020 for the Azul’s humanitarian missions. Out of 40 pilots 
crewing a COVID-19 humanitarian mission, 32 (80%) com-
pleted the sleep diary and 22 out of 40 (55%) wore a Zulu watch 
between May and June 2021. There were 20 (50%) pilots who 
completed both the sleep diary and the Zulu watch. Only pilots 
who both completed the sleep diary and provided Zulu watch 
data (N = 20) have been included in these analyses. A total of  
N = 15 subjects provided Zulu and diary data for all 4 flight legs; 
N = 3 subjects provided Zulu and sleep diary data for 3 out of the 
4 flight legs; N = 1 subject provided Zulu watch data for all flight 
legs but only completed the sleep diary for 3 out of 4 flight legs; 
and N = 1 subject completed the sleep diary for all 4 flight legs, 
but only wore the Zulu watch for 3 out of the 4 flight legs. In 
total, 77 observations of in-flight sleep opportunities by AutoS-
leep, sleep diary, and Zulu watch were compiled from all 4 flight 
legs across all 5 missions and 20 subjects for subsequent analysis.

Each flight leg was approximately 12 h and the planned 
available rest time for each crewmember per stage was approx-
imately 9 h. In-flight rest periods were freely chosen by the crew 
during the mission. Crew slept either in crew rest facilities or in 
the business class section, per their preference. Pilots slept 
between 0 min and 9 h and 55 min during mission flight legs. 
There was only one instance in which a pilot did not report any 
sleep and no sleep event was recorded by the Zulu watch during 
a flight leg. For flight legs during which sleep occurred, the 
minimum sleep duration was 22 min.

AutoSleep predicted 235 ± 20 min of sleep per flight leg, 
compared to the 325 ± 128 min per flight leg reported by sleep 
diary, or the 246 ± 132 min per flight leg recorded by Zulu 
watches. In-flight rest opportunities were determined ad libi-
tum during flights. This planned flexibility in sleep timing pre-
cluded any comparisons between AutoSleep estimations of 
sleep timing and observations of actual sleep onset or awaken-
ing. In-depth descriptions of sleep patterns during mission 
flights are reported elsewhere.5

Comparison of average in-flight sleep duration per flight 
leg is depicted in Fig. 2A. Paired samples t-tests showed that 

Fig. 2. In-flight sleep duration during COVID-19 humanitarian missions.  
A) Average sleep duration across all mission flight legs as predicted by  
AutoSleep (gray), or measured by sleep diary (light gray), and Zulu watch (black). 
B) Average sleep duration per 24-h period during layover periods as predicted 
by AutoSleep (gray) or measured by Zulu watch (black). Significance is 
indicated by an asterisk (*) at P ≤ 0.05 and a double asterisk (**) at P ≤ 0.001.
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diary reports of sleep duration were significantly higher than 
AutoSleep predictions (t = 6.05, df = 151, P ≤ 0.001) or Zulu 
watch sleep duration (t = 3.73, df = 150, P ≤ 0.001). AutoSleep 
predictions of sleep duration were not significantly different 
from Zulu watch sleep duration during FDPs (t = 0.69,  
df = 151, P = 0.48).

There were two layovers in Europe during each mission—
an outbound layover and a return layover. Layovers were on 
average 1853 ± 473 min long, ranging between 1186–2405 
min. A comparison of AutoSleep predictions of sleep duration 
during layovers against Zulu watch measurements of sleep 
during layovers is depicted in Fig. 2B. AutoSleep predicted an 
average sleep duration of 475 ± 48 min per 24-h period during 
layovers. Paired samples t-tests showed that AutoSleep 
predictions of sleep duration per 24-h period during layovers 
was significantly higher than Zulu-recorded sleep duration 
for both outbound (516 ± 18 min vs. 426 ± 1146 min; t = 2.51,  
df = 17, P = 0.02) and return layovers (431 ± 15 min vs. 338 ± 
112 min; t = 3.61, df = 18, P = 0.002). Similar analyses includ-
ing sleep diary information could not be performed since 
pilots were not required to report their sleep during layover 
periods. AutoSleep was used to fill in gaps about sleep  
duration for the Sleep Diary scenario.

ICCs examining agreement between biomathematical pre-
diction of sleep (AutoSleep), subjective report of sleep (diary), 
and objective measurement of sleep (Zulu watch) during 
COVID-19 mission flights indicated excellent agreement 
between all measures for sleep duration (ICC = 0.94, 95% CI = 
0.79–0.99, P < 0.001). AutoSleep predicted an average crewing 
effectiveness of 84% ± 6% (range: 66–102%) across all mission 
flight legs. Sleep diary and Zulu watch estimated average crew-
ing effectiveness to be average: 86% ± 6%, range: 58–104%, and 
average: 84% ± 7%, range: 50–101%, respectively. There were 
no significant differences between AutoSleep and diary for 
minimum (t = 1.54, df = 152, P = 0.13), maximum (t = 1.29,  
df = 152, P = 0.20), or average (t = 1.18, df = 152, P = 0.24) effec-
tiveness scores during crewing events. There were no signifi-
cant differences for minimum (t = 0.99, df = 152, P = 0.32), 
maximum (t = 0.27, df = 152, P = 0.79), or average (t = 2.02,  
df = 152, P = 0.05) effectiveness scores during crewing events 
between sleep diary and Zulu watch. Maximum (t = 1.59, df = 
152, P = 0.11) and average (t = 0.85, df = 152, P = 0.40) effective-
ness scores were not significantly different between AutoSleep 
and Zulu watch, but minimum crewing effectiveness for Zulu 
watch scenarios (average minimum crewing effectiveness score: 
74% ± 8%) were statistically lower than AutoSleep predictions 
(77% ± 6%; t = 2.44, df = 152, P = 0.02). The linear regressions 
for effectiveness distribution by 5% bins across all missions are 
shown in Fig. 3A. R2 values were greater than 0.9 when com-
pared against sleep diary (Fig. 3B; y = 0.93 + 0.67, R2 = 0.94) or 
Zulu watch (Fig. 3C; y = 0.84 + 1.44, R2 = 0.90).

DISCUSSION

The COVID-19 pandemic crisis disrupted almost every facet of 
modern society, but particularly the aviation industry faced 

unprecedented changes to daily operations. The purpose of 
SAFTE-FAST fatigue modeling software is to provide a sci-
ence-based process for the analysis of on-the-job fatigue risk, 
including the assessment of suitable pairings and planned ros-
ters to ensure safety during flights. Azul Airlines tested the lim-
its of their pilots’ capabilities and the capabilities of SAFTE-FAST 
to conduct five unprecedented humanitarian missions during 
an international crisis. Sleep during the 30+ hour flights were 
prospectively modeled using the SAFTE-FAST 4.0 AutoSleep 
function. This was the first time AutoSleep was applied to a 
30+-h FDP.

While SAFTE-FAST does provide a service through which 
AutoSleep parameters can be harmonized to previously col-
lected objective measures of sleep, COVID-19 circumstances 
did not allow for prospective harmonization. As such, flight 
scenarios were modeled using Azul’s default settings for 
AutoSleep with additional input from the airline’s human factor 
and safety researchers. The aim of this paper was to evaluate the 
ability of the SAFTE-FAST 4.0 AutoSleep function to predict 
pilot sleep duration throughout the missions compared against 
subjective (sleep diary) and objective (Zulu watch) measures 
of sleep.

Pilots reported longer sleep durations during flights on their 
sleep diaries compared to AutoSleep predictions or Zulu watch 
measurements (Fig. 2A). This finding supports previous evidence 
that individuals overestimate sleep duration by self-report.1,13  
It should be noted that the Zulu watch does not take into 
account sleep onset latency (i.e., the time it takes to first fall 
asleep) and treats periods of sustained wakefulness as the ter-
mination of a sleep event. As illustrated in Fig. 1C, multiple 
Zulu sleep events frequently were logged during the time period 
reported for one diary-reported sleep event. Those periods of 
wakefulness were not included in the Zulu watch estimation of 
sleep duration, but could have been reported as sleep by diary, 
which may contribute to the observed overestimation by 
self-report.

Interestingly, the overestimation of sleep duration by sleep 
diary did not result in major downstream effects with regards 
to effectiveness or goodness-of-fit. One reason why effective-
ness distributions were similar despite differences in sleep 
duration as measured by self-report may be because the Sleep 
Environment parameter was adjusted based on pilots’ diary 
reports of sleep quality. Sleep events with worse sleep quality 
ratings (e.g., Poor) were given less credit than sleep events with 
higher quality ratings (e.g., Excellent). The sleep diary scenario 
also used AutoSleep to fill in gaps in sleep reporting during 
layovers, which could be expected to produce similar results. 
The Zulu watch scenario did not employ the usage of any 
AutoSleep and Sleep Environment parameters were not 
adjusted by objective sleep quality. A comparison of sleep qual-
ity vs. Zulu watch measures of sleep efficiency or sleep depth 
can be found in Devine et al.4 Improving biomathematical 
modeling of sleep quality is a future goal for the Institute for 
Behavior Resource’s science and software development teams.

AutoSleep predictions of sleep were comparable to objec-
tively measured sleep during in-flight periods, but not during 
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layovers. Pilots slept almost 2 h less during layovers than was 
predicted by AutoSleep, which may account for why SAFTE-
FAST predictions of minimum effectiveness were lower in the 
Zulu watch scenario compared to the AutoSleep scenario. This 
finding highlights the importance of obtaining proper rest not 
only during active-duty periods, but during downtime as well. 
Foregoing sleep during layovers could constitute a fatigue risk 
during ULR. One possible explanation for this difference was 
that AutoSleep was set to predict sleep during layovers under 
the assumption that pilots retained a home base sleep schedule 
although pilots were in a different time zone. Even though 
pilots were instructed to operate on home base (UTC-5) time 
throughout the missions, being in a new time zone may have 

negatively impacted their sleep. AutoSleep can be set to predict 
sleep based on local time rather than home base time and could 
have yielded a more accurate estimation of sleep duration 
during layovers.

With the exception of the lowest possible effectiveness 
during a crewing event, crewing effectiveness was similar 
whether sleep was estimated by AutoSleep, reported via sleep 
diary, or collected objectively using the Zulu watch. This find-
ing indicates that a sleep estimator within a biomathematical 
model can be applied to ULR operations. It is important to note 
that subjects in this study were not actively piloting during the 
entire FDP, but that the entire FDP was considered a crewing 
event. Mission crews decided rest periods and active piloting 

Fig. 3. AutoSleep effectiveness predictions during COVID-19 humanitarian missions compared to sleep diary and Zulu watch. A) AutoSleep predictions 
(in dark gray) of effectiveness distribution compared to diary (in light gray) or Zulu watch (in black) distributions by percent of crewing time. B & C) Linear 
regression and R2 values indicating the goodness of fit for effectiveness distribution between B) AutoSleep and sleep diary and C) AutoSleep and Zulu watch. 
Higher R2 values represent smaller differences between the model (in this case, AutoSleep) and the observed data (i.e., diary or Zulu watch). Error bars indicate 
individual variability in effectiveness distribution across all pilot subjects.
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periods in flight rather than prospectively and, so, crewing peri-
ods could not be more acutely predicted. Zulu watch sleep 
events tended to occur in very close proximity to minimum 
effectiveness, which could indicate that pilots were resting 
during periods of reduced effectiveness. However, while pilots 
reported their sleep periods, they did not report the times 
during which they were flying the aircraft, so neither this exam-
ple or other possible scenarios could be investigated. This con-
stitutes an understandable limitation to the present analyses 
given the operational nature of the data collection. AutoSleep 
predicted sleep duration well given the limited knowledge of 
actual flight procedures, but an interesting follow-up study will 
be to examine the accuracy of the sleep estimator when the 
information about work constraints is more detailed. An addi-
tional follow-up will be to evaluate AutoSleep predictions using 
local time vs. base time assumptions about sleep.

Variability in actual sleep behavior is to be expected, and no 
model can perfectly account for this unpredictability. 
Notwithstanding that limitation, SAFTE-FAST 4.0 did an 
excellent job of forecasting sleep during ULR humanitarian 
flights. However, sleep is not the only human factor to consider 
when determining the applicability of ULR flights. The condi-
tions of Azul Airlines’ five humanitarian flights were consider-
ably different (two relay crews of four pilots each; eight pilots 
total; no cabin crew or passengers) from normal commercial 
routes. Not only could the absence of passengers or other flight 
crew allow for better quality in-flight rest, but could impact the 
amount of workload or psychosocial stress imposed on the 
pilots. Additionally, events like delays, schedule changes, or 
flight-duty extensions cannot be anticipated or modeled. 
No such events occurred during these missions, but could 
contribute to unforeseen fatigue risk in normal operations. 
Furthermore, pilot demographics, like age, gender, or years of 
flight experience, were not collected. These variables may have 
had an impact on performance or sleep behavior, but could not 
be investigated in this dataset. Importantly, the humanitarian 
purpose of Azul’s mission motivated these crews to fly 30+-h 
FDPs. Motivation is an important and often overlooked human 
factor to consider when assessing the safety of ULR rosters.

In conclusion, Bauer et al. recently suggested that a business 
model of point-to-point ULR services would allow airlines to 
successfully adjust to post-COVID-19 operations.2 However, it 
is necessary to evaluate ULR flights in terms of human factors 
as well as economic factors. The human factor considered in 
these analyses is sleep, but credit must be given to Azul Airline’s 
Human Factors Safety Department for a more wholistic consid-
eration of flight logistics than is reported in this article. Azul 
Airlines tested the limits of their pilots’ capabilities and the 
capabilities of SAFTE-FAST to conduct five unprecedented 
ULR humanitarian missions during an international crisis. The 
ability of the SAFTE-FAST AutoSleep function to accurately 
predict actual pilot rest patterns during the humanitarian mis-
sions is impressive, but not nearly as impressive as the efforts 
put forth by Azul’s human factors team or the dedication of 
Azul’s pilots to plan and execute these missions.
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