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Optimization of Exercise Countermeasures to  
Spaceflight Using Blood Flow Restriction
luke Hughes; Kyle J. Hackney; Stephen D. Patterson

 INTRODUCTION: During spaceflight missions, astronauts work in an extreme environment with several hazards to physical health and 
performance. exposure to microgravity results in remarkable deconditioning of several physiological systems, leading 
to impaired physical condition and human performance, posing a major risk to overall mission success and crew safety. 
Physical exercise is the cornerstone of strategies to mitigate physical deconditioning during spaceflight. Decades of 
research have enabled development of more optimal exercise strategies and equipment onboard the international 
Space Station. However, the effects of microgravity cannot be completely ameliorated with current exercise 
countermeasures. Moreover, future spaceflight missions deeper into space require a new generation of spacecraft, 
which will place yet more constraints on the use of exercise by limiting the amount, size, and weight of exercise 
equipment and the time available for exercise. Space agencies are exploring ways to optimize exercise countermeasures 
for spaceflight, specifically exercise strategies that are more efficient, require less equipment, and are less time-
consuming. Blood flow restriction exercise is a low intensity exercise strategy that requires minimal equipment and can 
elicit positive training benefits across multiple physiological systems. this method of exercise training has potential as 
a strategy to optimize exercise countermeasures during spaceflight and reconditioning in terrestrial and partial gravity 
environments. the possible applications of blood flow restriction exercise during spaceflight are discussed herein.
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Human spaceflight is entering a new era with plans to 
extend exploration beyond low Earth orbit to inter-
planetary travel. Astronauts work in an extreme micro-

gravity (µG) environment posing several hazards to human 
health and performance, including deconditioning of several 
physiological systems.35,65 Impairment of an astronaut’s physi-
cal condition increases the difficulty of performing routine 
everyday tasks and extravehicular spacewalks.88 It increases the 
risk of training-related injuries, which are the most common 
source of injury to astronauts on mission.158 Furthermore, 
impaired physical condition and performance could be detri-
mental for mission critical tasks such as exiting a spacecraft.188 
Astronauts will need to maintain physical fitness during non-
terrestial living to enable successful exploration and transit 
back to Earth. Physical deconditioning during transit may, 
therefore, affect overall mission success and crew safety.

Exercise is a key countermeasure to mitigate decondition-
ing caused by µG.110,159 The refinement of exercise protocols 
throughout years of spaceflight and analogous research has 
reduced the magnitude of deconditioning, but it cannot be 

completely counteracted with current countermeasures. Postflight 
reconditioning is required to return astronauts to their preflight 
physical condition.141 Interplanetary exploration will place fur-
ther operational, technical, and logistical constraints upon the use 
of exercise, e.g., less space for exercise equipment in the Orion 
spacecraft.102 Longer duration missions (i.e., up to 3 yr for a 
Martian mission) will also impose a more difficult reconditioning 
process. Space agencies aim to optimize exercise countermeasures 
to facilitate longer duration and interplanetary missions.141,159

Blood flow restriction (BFR) exercise may enable optimiza-
tion of exercise countermeasures.12,65 Using a tourniquet cuff to 
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restrict blood flow in the exercising limb during exercise elicits 
several positive training adaptations in the physiological systems 
affected by µG.84,132,139 It requires minimal equipment and is 
low-intensity, which compliments the anticipated operational, 
technical, and logistical constraints of future spaceflight.102 
Previous reviews have discussed the potential for BFR as an exer-
cise countermeasure during spaceflight,12,64,187 with several lim-
itations. Firstly, the use of BFR exercise for post-spaceflight 
reconditioning has not been explored. Secondly, while these 
reviews have focused on resistance and aerobic exercise with 
BFR, evidence suggests that BFR can be combined with novel 
training techniques, including whole body vibration5,28 and neu-
romuscular electrical stimulation.58,128,163 Finally, to our knowl-
edge, the specific means by which BFR could be used to optimize 
current exercise countermeasures159 has not been explored in 
depth. Therefore, this review aims to discuss how BFR training 
may be used to optimize exercise countermeasures during and 
post-spaceflight, the optimal method of application, and poten-
tial safety issues.

Physiological Effects of Exposure to µG
The absence of 1 G triggers remodeling of the cardiovascular, 
neuromuscular, and musculoskeletal systems. The first challenge 
from Earth to space involves a cephalad shift of blood from the 
lower extremities, causing central blood volume expansion and 
increased cardiac preload, stroke volume, and cardiac out-
put.134,135 Blood pressure, however, is maintained,135 either by 
adapted fluid loss through urine (e.g., natriuresis or diuresis) or 
an unknown mechanism of peripheral vasodilation.134 This 
cephalad fluid shift is associated with nausea, headaches, and 
facial edema and may occur chronically,134 possibly contributing 
to ophthalmic changes given increases in intracranial pressure.118

Concurrently, neural and downstream skeletal muscle con-
nections begin to adapt to new sensory stimuli and reduced use. 
Spatial orientation impairment,195 increased difficulty compar-
ing the mass of objects, and increased reaction time have been 
reported during and post-spaceflight.17,91,153 Magnetic resonance 
imaging (MRI) of International Space Station (ISS) crewmem-
bers postflight have found brain structural gray matter decreases, 
including large areas in the temporal and frontal poles.91 Bilateral 
focal gray matter has also been observed within the medial pri-
mary somatosensory and motor cortex.91 In parallel, reductions 
in mechanical loading and reduced neuromuscular use lowers 
the rates of basal and stimuli-induced muscle protein synthesis 
(MPS).57,169 Combined with standard or accelerated muscle pro-
tein breakdown (MPB) rates, this shifts protein balance to a neg-
ative state.57,170 Consequently, muscle fiber cross-sectional area 
(CSA) is decreased50 and muscle fiber composition shifts toward 
faster myosin heavy chain expression.50,95 Type I fibers appear to 
be the most influenced by altered gravity, with in-flight research 
demonstrating a shift to Type IIx with spaceflight.179 However, 
most of the muscles of the lower extremities atrophy during 
spaceflight,104 even with mandated exercise and other counter-
measures (e.g., nutritional, pharmaceutical).

Concomitantly, bone mineral is released from skeletal stores 
and is a major concern for astronaut health.161 During 4–6 mo 

on the ISS, rates of bone loss were 0.9% per month in the spine 
[areal bone mineral density (BMD)] and 1.4–1.5% per month 
at the hip.97 Moreover, in the hip, integral, cortical, and trabec-
ular volumetric BMD were lost at rates of 1.2–1.5% per month, 
0.4–0.5% per month, and 2.2–2.7% per month, respectively.97 
The loss in BMD may lead to increased osteoporosis and frac-
ture risk in astronauts.160 Complicating bone loss is the poten-
tial for changes in acid-base balance from the diet via 
consumption of sulfur containing amino acids.63 This concept 
is based on the acid-ash hypothesis,180 whereby in-flight higher 
partial pressure of carbon dioxide (CO2) and endogenous acid 
production from the diet (amino acids, phosphorus, chlorine) 
may alter acid buffering, leading to bicarbonate being seques-
tered from bone to compensate.199 The CO2 concentration  
is ∼10 fold higher on the ISS compared to Earth as a result of 
metabolically produced CO2 and the processes required for its 
removal and/or recycling.101,155 Chronic exposure to such CO2 
levels can lead to headaches, nausea, altered sensorimotor and 
vestibular function,118,155 and may be associated with space-
flight associated neurooccular syndrome.105

For human spaceflight, the translational challenge of this 
deconditioning is human safety and the negative impact on 
astronaut task performance.4,158 Future missions will require 
landing on unknown surfaces and long-term habitation. 
Extensive physical work will be performed for survival and 
mission success while in a physiologically deconditioned state. 
Decrements in maximal oxygen consumption (V

.
o2max),124 neu-

rological reorganization during task performance,91 weakened 
skeletal muscle morphology,44 and elevated risk of bone 
injury160 represent significant factors to be mitigated by the 
international spaceflight community.

Current Exercise Countermeasures and Challenges for Longer 
Duration Spaceflight
The exercise hardware onboard the ISS allows for both high 
intensity resistance and aerobic exercise informed by our 
understanding of the requirements for keeping humans healthy 
during longer duration missions.65 For detailed reviews on the 
evolution of exercise hardware and countermeasures for space-
flight, the reader is directed to previously published works.92,159 
Target intensities are 70–80% of one repetition maximum and 
60–90% V

.
o2max for aerobic exercise. Astronauts are allocated 

approximately 2.5 h/d for exercise and accompanying proce-
dures, 6 d/wk, where each day includes a resistance and aerobic 
exercise session, typically 45 min in duration each, with a min-
imal break in between.110,159 Upon returning to Earth after long 
duration missions, astronauts undergo a postflight recondition-
ing program to return them to their preflight physical condition 
and prevent long term health issues.96,141 This begins with treat-
ment of any injuries followed by functional, endurance, and 
strength exercises which are gradually progressed in intensity 
for several weeks until the astronaut returns to work.

Future missions place several technical and physiological 
constraints on exercise countermeasures. The new generation of 
spacecraft (e.g., the Orion Multipurpose Crew Vehicle) cannot 
accommodate the size and weight of current exercise equipment 
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used on the ISS.22 It is anticipated that astronauts will have less 
available time for exercise and device maintenance and repair.102 
Mars missions are expected to cause greater physiological decon-
ditioning during transit, which requires development of ‘precon-
ditioning’ exercise programs.171 These will be implemented 
toward the end of transit to prepare astronauts for re-exposure  
to nonterrestrial gravity. Upon arrival, reconditioning programs 
will be required to address physical health issues and prepare 
astronauts for work, and training programs will be needed to 
maintain physical fitness during nonterrestrial habitation, 
which will be constrained by limited exercise equipment and 
specialist assistance.

Blood Flow Restriction Exercise
Application. BFR is most commonly combined with low inten-
sity (i.e., 20–40% of maximal strength or 45–50% of maximal 
aerobic capacity) resistance and aerobic exercise.139 Fig. 1 out-
lines how to apply BFR through the following steps: 1) the cuff 
is applied proximally to the limb to be exercised; 2) the cuff is 
connected to an inflation device; 3) ‘limb occlusion pressure’ 
(LOP) is measured to individualize pressure prescription; 4) the 
cuff is inflated to compress the underlying vasculature; and 5) 
the individual performs exercise with BFR.

The goal is to partially restrict arterial inflow to tissues distal 
to the tourniquet cuff while completely restricting venous out-
flow.139 The optimal method of determining BFR pressure is to 
measure the individual’s LOP, which is defined as the minimum 

pressure required for complete restriction of arterial blood flow 
in that limb, and prescribe pressure relative to this.139 For more 
detail on optimal BFR exercise parameters, the reader is directed 
to a recent consensus paper.139 Current best practice is to use an 
automatic system consisting of a wide pneumatic cuff connected 
to an inflation device that automatically measures LOP and cal-
culates the required pressure for BFR exercise.68 As blood pres-
sure and flow behave differently in space, in-flight measurement 
of LOP would be required.12 While these automatic devices have 
been validated on Earth,68 it is currently unknown if µG would 
affect LOP measurement and regulation of BFR pressure during 
dynamic exercise in space. Therefore, future research should seek 
to determine the validity of BFR pressure prescription and regu-
lation during spaceflight analogs, e.g., parabolic flight.

Physiology of BFR exercise. Exercise causes increased deoxy-
hemoglobin (HHb) and reduced oxyhemoglobin (O2Hb). 
These changes are reversed during recovery by a hyperemic 
supraexercise increase in O2Hb and tissue oxygenation satura-
tion (stO2) due to vasodilation and increased demand for blood 
flow. A greater decrease in stO2 is observed during BFR exercise 
compared to matched volume exercise without BFR (−50% vs. 
−35%, respectively).116 Collectively, decreases of 29–50% for 
O2Hb and and 27–50% for stO2 have been reported with BFR 
exercise, concomitant with a 200–250% and 31–60% increase in 
HHb and total hemoglobin, respectively.56,75,79 Importantly, 
when BFR is applied through exercise and rest periods, there is 

Fig. 1. Application of blood flow restriction exercise.
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significantly lower stO2 recovery compared to exercise without 
BFR.56,116 The decrease in O2Hb and increase in HHb indicate 
local hypoxia, which rapidly resolves upon BFR cuff deflation.75

Local hypoxia during BFR exercise causes a reliance on 
anaerobic energy pathways with several notable physiological 
changes. Franz et al.53 demonstrated that BFR exercise leads to 
greater reductions in venous pH, partial pressure of O2 (Po2) 
(∼40% reduction), and O2 content, alongside a greater increase 
in venous Pco2 (∼50% vs. ∼25%) compared to matched load 
exercise without BFR. Furthermore, a greater increase in venous 
lactate level was observed with BFR exercise (from ∼2.0 to  
7.5 mmol · L−1), alongside a greater reduction in HCO3

− (∼24 to 
20 mmol · L−1). Collectively, these changes suggest that arterial 
oxygenated blood does not reach the capillary bed of the work-
ing limb and BFR causes metabolic acidosis in the venous por-
tion of the working limb. Similarly, Yasuda et al.189 observed 
lower levels of venous Po2 (28 mmHg vs. 33 mmHg), O2 con-
tent (34% vs. 52% mmHg), and pH (7.19 vs. 7.27), alongside 
high levels of venous Pco2 (72 vs. 60 mmHg) and lactate con-
centration (5.4 vs. 3.0 mmol · L−1), during BFR exercise com-
pared to matched load exercise without BFR.

The physiological changes observed by Franz et al.53 returned 
to pre-exercise levels by 5 min postexercise, indicating rapid 
recovery. This study involved individuals with no prior BFR 

training experience, and there is evidence to suggest that aspects 
of this response may be attenuated with chronic BFR training.29 
Yasuda et al.189 demonstrated that high intensity exercise resulted 
in greater changes in venous pH (7.14), Pco2 (91 mmHg), and 
lactate concentration (7.0 mmol · L−1) compared to BFR exercise. 
Nevertheless, the augmented physiological response to BFR exer-
cise is hypothesized to be a primary driver of training adaptation 
via activation of several secondary mechansims76 (Fig. 2), which 
will be discussed throughout this review.

BFR Exercise as a Countermeasure to the Physiological Effects 
of Spaceflight
Fluid shifts and orthostatic intolerance: spaceflight and analogous 
data. Cephalad fluid redistribution and altered cardiovascular 
function in µG can cause orthostatic intolerance upon return to  
1 G. The concept of applying restrictive pressure cuffs to the limbs 
to mitigate these changes has been explored previously. In the 
1990s Russia developed inflatable “Bracelet” cuffs designed for 
lower extremity fluid sequestration and prevention of fluid shifts. 
These cuffs were able to maintain fluid volume and preflight car-
diac status in a cosmonaut during Mir flights,7 and alleviate dis-
comfort associated with cephalad fluid shift.51 On the ISS, the 
Bracelet cuffs have shown commensurate effects on cardiac per-
formance and mitigation of postflight orthostatic intolerance.51

BFR CUFF 
INFLATION

↓ arterial blood flow
↑ venous occlusion

Hypercapnia

BFR exercise
↑ Hypoxia

↑ Metabolites

BFR CUFF 
DEFLATION

HYPERTROPHY
ADAPTATION

↑ venous pooling
↑ cell swelling

↑ MPS

AEROBIC CAPACITY 
ADAPTATION

STRENGTH 
ADAPTATION

↓ myostatin + 
other proteolysis 

genes

↑ SC activity

↑ activation + type 
II fiber recruitment

TENDON
ADAPTATION

↑ tendon stem cell 
activity

↑ fluid sheer stress

↑ bone formation
↓ bone resorption 

BONE
ADAPTATION

↓ SV
↑ HR and VO2

↑ PGC-1α
↑ HIF-1
↑ VEGF

↑ mitochondrial 
biogenesis

↑ angiogenesis

VASCULAR 
ADAPTATION

↑ arterial inflow
↑ venous outflow

↑ reactive hyperemia
↑ sheer stress

↑ NO

↑ GH, IGF-1 + other 
hormonal factors

Fig. 2. The physiological effects of BFR exercise and possible mechanisms of adaptation.
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A gravity-like stimulus, such as lower body negative pressure, 
would likely be the most effective in-flight countermeasure for 
this orthostatic challenge.64 The application of BFR passively126 
and with resistance exercise94 during head-down tilt studies elic-
its similar hemodynamic and neurohumoral responses as gravi-
ty-induced stress. As highlighted by Hackney et al.,64 BFR 
exercise results in several physiological changes similar to the 
effects of lower body negative pressure, including lower limb 
blood pooling, decreased venous return, and augmented auto-
nomic activation. Therefore, repeated application of BFR toward 
the end of spaceflight may induce gravity-like stress on the car-
diovascular system and help reduce postflight orthostatic intoler-
ance. BFR exercise could be used to improve blood flow73,138 to 
mitigate the decrease in lower limb blood flow observed after 
long duration spaceflight.81 To date, BFR has only been tested in 
environments that simulate weightlessness (i.e., head-down tilt), 
with no in-flight data available.

Muscle atrophy and associated mechanisms. The available BFR 
evidence elucidates how it could be used to counteract remodel-
ing of several physiological systems during spaceflight. The most 
apparent application is to mitigate muscle atrophy104 that is driven 
by lower rates of basal169 and stimuli-induced MPS57 and acceler-
ated MPB rates170 during spaceflight. Low intensity resistance 
exercise [i.e., 20% 1 repetition maximum (RM)] with BFR 
increases MPS by 46–69% in the 24 h following exercise com-
pared to equivalent exercise without BFR through increased acti-
vation of the mTOR-p70S6K pathway, increased MAPK-mediated 
anabolic signaling, and reduced proteolysis-related gene expres-
sion.54,55,62,117 BFR resistance exercise was recently shown to 
increase cumulative myofibrillar protein synthesis similarly to 
high intensity exercise over 6 wk of training.162 These anabolic 
effects may contribute to muscle hypertrophy with BFR training,2 
an idea which is supported by BFR studies reporting increases in 
muscle CSA at a similar rate (0.11–0.22% per day)100,175 as heavy 
load resistance training at the same frequency.186

The reduction in muscle satellite cell (SC) content and myo-
nuclear number following spaceflight36,176 provides a mecha-
nistic explanation for reduced MPS and muscle atrophy.50 SCs 
play an indispensable role in muscle tissue maintenance and 
regeneration143,193 and are activated by several factors, includ-
ing mechanical load.24 Maintenance of SC and myonuclear 
number during spaceflight is a potentially valuable method of 
mitigating atrophy and preserving regenerative capacity.146 
Wernbom et al.185 demonstrated that BFR resistance exercise 
acutely increased the number of SCs per muscle fiber for up to 48 
h postexercise, alongside phosphorylation of the mTOR-p70S6K 
pathway. Short duration (< 3 wk) high frequency (i.e., daily) BFR 
resistance exercise training can increase the number of SCs and 
myonuclei per muscle fiber alongside substantial muscle hyper-
trophy and strength improvement15,131 (Fig. 2). Interestingly, 
these responses peaked between 10–20 d after cessation of train-
ing, suggesting delayed myoblast fusion into existing muscle 
fibers. The available data indicates that the increase in SC content 
and myonuclear number is greater than typical changes observed 
with high intensity resistance training.142,143 At present, there is 

no data available concerning the effect of longer duration or less 
frequent BFR training on SCs.

Increased SC activity is driven by temporal expression of 
several myogenic regulatory factors which are upregulated with 
BFR exercise.40,103 The myostatin signaling pathway is a key 
negative regulator of muscle mass which affects SC prolifera-
tion and differentiation43 and has been targeted to protect 
against skeletal muscle atrophy during spaceflight.106 In rodent 
models, inhibition of myostatin using a neutralizing antibody 
has a protective effect against loss of skeletal muscle mass and 
strength during spaceflight.106,164 Myostatin is downregulated 
endogenously with exercise; for example, Cotter et al.34 showed 
that concurrent high intensity interval aerobic exercise and 
maximal exertion strength training could mitigate the increase 
in myostatin during simulated µG with limb suspension. 
Laurentino et al.100 demonstrated that 8 wk of BFR resistance 
training (20% 1 RM) decreased myostatin mRNA expression 
similarly to high intensity (80% 1 RM) training (45% vs. 41%) 
alongside comparable increases in muscle mass and strength. 
They also reported increased expression of several regulatory 
genes that act as intracellular myostatin inhibitors.100 When 
high intensity training is not feasible during spaceflight, low 
intensity BFR training could be used to positively affect protein 
turnover, increase SC activity, and reduce expression of myosta-
tin and several other genes involved in proteolysis. This may 
mitigate skeletal muscle loss and preserve muscle regenerative 
capacity in preparation for reloading (Fig. 3).

Bone, tendon and associated mechanisms. µG leads to ele-
vated bone resorption and reduced bone formation, causing 
an imbalance in bone metabolism,60,97 driven via effects on 
the Wnt/-catenin signaling pathway82 and several cytokines, 
growth factors,60 and bone morphogenetic proteins.6 Bone 
remodeling is initiated when osteocytes perceive mechanical 
stress via the action of integrins194 and interstitial fluid move-
ment.152 Despite using a lower mechanical load, evidence sug-
gests BFR exercise may benefit bone. BFR exercise acutely 
decreases blood markers of bone resorption13 and chronically 
elevates markers of bone formation11 compared to equivalent 
exercise without BFR. In older adults, Karabulut et al.85 found 
6 wk of BFR resistance exercise training (20% 1 RM) increased 
blood markers of bone formation similarly to high intensity 
(80% 1 RM) exercise (21% vs. 23%, respectively).

Due to a lack of data on BMD, it is difficult to draw definite 
conclusions concerning the effect of BFR on bone. While the 
mechanism by which BFR exercise may improve bone parameters 
is not established, several possibilities have been explored. BFR 
exercise may trigger molecular processes for bone remodeling via 
fluid shear stress within the osteocyte membrane caused by 
venous blood pooling and cell swelling.111 Furthermore, BFR 
training has been shown to activate vascular endothelial growth 
factor (VEGF)174 via the hypoxia inducible transcription factor 
pathway and improve blood flow,46,73 which may enhance  
delivery of factors necessary for bone remodeling. Finally, down-
regulation of myostatin with BFR exercise may positively impact 
bone metabolism42,90 (Fig. 2).
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There is some evidence of a possible effect of BFR on 
tendons. Kubo et al.93 found no change in stiffness of the ten-
don-aponeurosis complex following 12 wk of low intensity BFR 
resistance training, which concurs with the literature advocating 
training loads of a minimum 70% 1RM for optimal adaptive 
responses in tendon properties.18 However, Centner et al.27 
reported 12 wk of BFR resistance training elicited similar 
increases in tendon stiffness (36%) and CSA (8%) as heavy load 
training. Hypoxia can stimulate the proliferation of human ten-
don stem cells107,196 and is critical for bone-tendon junction 
healing;197 therefore, the ischemic and hypoxic environment 
with BFR exercise may stimulate tendon adaptation (Fig. 2). 
Furthermore, upregulation of several growth factors and 
improved blood flow may facilitate collagen synthesis.156 
Therefore, BFR may provide a means of targeting tendon-bone 
junction atrophy during spaceflight.83 However, these are the 
only two studies concerning the chronic effect of BFR on ten-
don properties with conflicting findings. Further investigation 
is needed for more definitive conclusions.

Aerobic capacity, vascular remodeling, and associated 
mechanisms. A major challenge is to mitigate the decrease in 
V
.
o2max that occurs during spaceflight.124 Combining low inten-

sity (i.e., < 50% V
.
o2max) cycling or walking exercise with BFR 

improves aerobic capacity compared to equivalent exercise 
without BFR.14 This may be driven by changes to central hemo-
dynamics and adaptations throughout the vascular tree. Studies 
show a higher V

.
o2 at a given low intensity workload and a dis-

proportionate increase in V
.
o2 with increased workload when 

aerobic exercise is performed with BFR.178 Due to venous 
occlusion, stroke volume decreases and heart rate increases 
during BFR exercise.174 The metabolic, hemodynamic, and 
intensity demands appear augmented when low intensity aero-
bic exercise is performed with BFR.

µG is a potent stimulus for vascular remodeling. Spaceflight 
and bedrest analog studies report decreased arterial diame-
ter,16,41 increased arterial stiffness,10,72,181 increased venous 
diameter,8 altered venous compliance, and decreased emptying 
rates52 in the lower limbs. Altered vascular wall pressure without 

Fig. 3. The potential applications of blood flow restriction during spaceflight. CM, countermeasure; ISS, International Space Station; BFR, blood flow  
restriction; NMES, neuromuscular electrical stimulation; WBV, whole body vibration.
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gravity may drive vascular remodeling via several similar mech-
anisms causing altered arterial and venous morphology on 
Earth.198 Peripheral arterial adaptations to BFR resistance train-
ing include increased conduit artery flow mediated dilation, and 
resting and maximal diameters.29,73 Increased reactive hyper-
emic blood flow,47,73,138 vascular conductance,125 capillary filtra-
tion,46,73 and number of capillaries per myofiber132 with BFR 
resistance training reflect decreased peripheral resistance of the 
microvasculature. Resistance and aerobic training with BFR 
may increase venous compliance;78,125 however, this evidence is 
limited and equivocal, with one study reporting no change in 
venous compliance with BFR resistance training.48 There are 
several mechanistic explanations for these adaptations, includ-
ing upregulation of endothelial nitric oxide synthase, hypox-
ia-inducible factor 1-α, PGC-1α, and VEGF,31,49,98 which are 
driven by hypoxia and increased vascular shear stress from 
blood pooling and reactive hyperemia.30 Furthermore, increased 
blood CO2 concentration with BFR exercise53,189 may contribute 
to vascular adapation. Literature suggests that local tissue acido-
sis from elevated CO2 concentration causes induction of regional 
VEGF synthesis and an NO-dependent increase in collateral 
blood perfusion. While existing evidence demonstrates eleva-
tions in VEGF and CO2 with BFR exercise, there is currently no 
evidence directly linking the elevation in CO2 with BFR exercise 
to adaptation.

Hematopoietic homeostasis and associated mechanisms. 
Following spaceflight many astronauts have hematopoietic 
disorders61 and altered responses such as decreased plasma 
and blood cell mass and modified blood flow.59 These changes 
may be driven by altered activity of hematopoietic stem pro-
genitor cells (HSPC), also known as endothelial progenitor 
cells.183 Plett et al.144 demonstrated that µG inhibited cell 
migration, cycle progression, and differentiation in CD34+ 
HSPCs. Wang et al.183 showed that spaceflight and simulated 
µG decrease the number and proliferative capacity of HSPCs 
in vitro. Exercise can stimulate HSPCs154 when performed at 
higher intensities for longer durations.99,177 The role of 
hypoxia in upregulation of these cells is shown by concomi-
tant elevations in several angiogenic factors, e.g., VEGF.154 
BFR exercise was found to acutely upregulate CD34+ HSPCs 
in circulation, alongside increased vasoprotective enzyme 
angiotensin-converting enzyme 2, due to regional hypoxia 
induced by BFR.84 This promotes skeletal muscle angiogenesis 
and vascular regeneration, which likely contribute to increased 
myogenesis. Elevation in CO2 concentration can mobilize 
endothelial progenitor cells;80 however, there is currently no 
evidence concerning the effect of increased CO2 concentration 
with BFR exercise on endothelial progenitor cell activity. 
Montgomery et al.123 previously reported no changes in 
circulating HSPCs at 30 min following acute BFR resis-
tance exercise.123 The authors observed a delayed angiogenic 
gene expression response to BFR exercise.123 As HSPCs were 
unchanged in the immediate postexercise period and upregu-
lated at 2+ h postexercise,154 future research should examine 
the time-course response and potential impact of CO2.

BFR during preconditioning and postflight reconditioning. 
Data suggests it is more challenging to return to gravity than to 
adapt to µG136,140 and reapplying mechanical load is the most 
effective method to restore muscle mass and increase myonu-
clear and SC number.24 BFR exercise has several implications 
for: 1) in-flight preconditioning in preparation for landing; and 
2) postflight reconditioning (Fig. 3). The most evident benefit 
for postflight reconditioning is the low intensity nature and 
potent rehabilitation capacity. Returning astronauts are load 
compromised and perform initial reconditioning exercises at a 
low intensity to minimize the risk of injury.96 BFR exercise is an 
effective rehabilitation tool for muscular, aerobic, and func-
tional adaptations in load compromised populations with min-
imized risk of injury.69–71 It could be used to maximize 
adaptations to low intensity exercise, minimize risk of injury, 
and treat transit-induced injuries during postflight recondi-
tioning of astronauts on Earth and another planet (Fig. 3).

Muscle hypertrophy and strength improvements are seen 
with 1–3 wk of daily and twice daily BFR training.131,139 A short 
training block of high-frequency BFR training may rapidly 
improve strength to prepare astronauts for safe landing and 
exiting of the spacecraft (Fig. 3). Delayed myonuclear addition 
to existing fibers15,131 may improve regenerative capacity during 
reconditioning, as impairment to SCs blunts the hypertrophy 
response to exercise.45 This approach increases myocellular 
stress and inflammation without apparent structural muscle 
damage.25 No evidence is presently available concerning high 
frequency aerobic exercise with BFR and the effect on other tis-
sues. Some BFR evidence shows muscle hypertrophy and 
strength improvements in muscles proximal to the cuff,20,21 
including trunk muscles.1,191 This may help target trunk mus-
cles to improve postural control during astronaut recondition-
ing.96 It is hypothesized that downstream fatigue increases fiber 
recruitment in proximal muscles to maintain force output 
during multijoint BFR exercise.190 However, there is a paucity of 
research with inconsistent results and the adaptive mechanisms 
remain unclear.157,191,192

Optimization of Exercise Countermeasures with BFR
Efficient, concurrent, and combined training. Due to exercise 
time and equipment constraints for future missions, combining 
exercise methods to facilitate rapid adaptations is vital.159,187 
Resistance exercise elicits specific muscular adaptations with lit-
tle improvement in cardiovascular fitness,74 with the opposite 
true for aerobic training.184 Concurrent training could optimize 
exercise countermeasures with simultaneous aerobic and mus-
cular adaptations.159,165 A high exercise intensity is recom-
mended to maximize adaptations to resistance and aerobic 
training.3 This may impair training adaptations, particularly 
muscle strength gains. This is termed the ‘interference effect’39 
and is governed by training intensity, load, and volume.165 This 
presents a paradox, whereby reducing the intensity of one exer-
cise type may benefit the other but dampen its own effect.165 
BFR exercise may minimize the interference effect without 
reducing the efficacy of concurrent training. Libardi et al.108 
compared concurrent high intensity resistance and aerobic 

D
ow

nloaded from
 https://prim

e-pdf-w
aterm

ark.prim
e-prod.pubfactory.com

/ at 2025-05-13 via free access



EXERCISE IN SPACE USING BFR—Hughes et al.

AEROSPACE MEDICINE AND HUMAN PERFORMANCE Vol. 93, No. 1 January 2022  39

exercise (70–80% 1RM and 50–80% V
.
o2max) to concurrent 

training with aerobic exercise at 50–80% V
.
o2max, and resistance 

exercise at 20–30% 1RM with BFR. Comparable increases in 
muscle CSA, 1RM strength, and V

.
o2max were observed. BFR 

training can also benefit multiple physiological systems with one 
type of exercise. Several studies show combining either resis-
tance or aerobic exercise with BFR leads to muscular and cardio-
vascular adaptations simultaneously.1,89,137 BFR could be used 
for ‘combined training’ to optimize exercise countermeasures 
during spaceflight159 (Fig. 3).

‘Efficient’ training describes the process of reducing training 
volume while maintaining effectiveness, identified as a strategy 
for optimizing exercise countermeasures.159 Abe et al.1 compared 
the effect of two aerobic exercise protocols on muscle volume, 
CSA, strength, and V

.
o2max over 8 wk of training. Both protocols 

involved cycling at 40% V
.
o2max, with one group cycling for 45 

min per session while the other group cycled for only 15 mins 
with BFR. Increases in muscle CSA (3–5%), strength (8%), 
V
.
o2max (6%), and exercise time until exhaustion (15%) were 

observed with BFR training only, despite a lower training vol-
ume. de Oliveira et al.137 compared low intensity interval training 
with BFR to high intensity interval training. They reported simi-
lar improvements in V

.
o2max and maximal power output with 

both types of training, while muscle strength increased (11%) 
only after training with BFR, despite a 340% greater training vol-
ume with high intensity interval training. A low volume of BFR 
training appears sufficient for muscular and aerobic adaptations 
and may provide a more efficient exercise countermeasure. 
However, the minimal effective dose is currently unknown.

BFR as a complementary strategy. Novel countermeasures that 
enhance the effects of exercise or reduce reliance on it are para-
mount for future spaceflight missions.159 Neuromuscular electri-
cal stimulation (NMES) is targeted to compliment pre-existing 
exercise countermeasures.115 This technique involves application 
of preprogramed electrical stimuli to superficial muscles to gen-
erate muscle contractions. It can mitigate muscle atrophy during 
periods of unloading37 by increasing MPS182 and decreasing 
MPB.38 Despite promising spaceflight and analogous studies, a 
major limitation is the discomfort caused by the high currents 
required to maximize effectiveness.114 Performing BFR during 
lower intensity NMES can increase muscle hypertrophy and 
strength compared to NMES alone,58,128 possibly via increased 
mTOR and MAPK signaling.129 NMES with BFR was found to 
attenuate muscle mass loss during 14 d of limb immobilization,163 
but was not protective against loss of muscle strength or struc-
tural and functional deconditioning of the femoral artery.33 
Addition of BFR to NMES during spaceflight may effectively 
mitigate muscle atrophy while minimizing discomfort, and 
astronauts could perform other tasks concomitantly (Fig. 3). 
Future research should compare this to high intensity NMES and 
aim to identify optimal parameters of application.67

Whole body vibration (WBV) can mitigate muscle atrophy, 
bone loss, and conduit artery remodeling during bed 
rest.16,122,149 It passively contracts muscles through high fre-
quency stimulation of spinal neuronal networks, increasing 

lower limb muscle tissue oxygenation, blood flow, and activa-
tion.32,112,150 Higher vibration frequencies elicit greater muscle 
activation,66,147 but may cause severe muscle soreness, hema-
toma, and may even reduce muscle activation due to a complex 
interaction of mechanical and reflex inhibitory factors.147,151 
Performing BFR during WBV was found to increase muscle 
mass, strength, and endurance compared to WBV alone,26 pos-
sibly via greater acute neuromuscular, metabolic, and hemody-
namic changes,28,86 and increased activation and proliferation 
of SCs.5 Performing BFR with WBV during spaceflight may, 
therefore, increase its effectiveness at mitigating physiological 
deconditioning, particularly muscle atrophy via increased SC 
activity (Fig. 3). However, one study reported no additional 
benefit of performing BFR during WBV,121 highlighting the 
need for more research.

Operational benefits of BFR exercise. BFR exercise may pro-
vide additional benefits for future missions. Logistically, BFR 
exercise requires minimal equipment and less space and load-
ing capacity than current exercise protocols.110,159 This may 
reduce exercise-specific and, potentially overall, mission costs 
and reduce vibration transmission to the spacecraft. Operation-
ally, more efficient training with BFR exercise would allow 
more time for nonexercise related missions tasks. The low 
intensity nature of BFR exercise could reduce the incidence of 
strain-related injuries from in-flight training.158 Furthermore, 
BFR exercise would provide a potent rehabilitation tool for any 
injuries.69

Safety of BFR
The majority of peer-reviewed evidence supports the safety of 
BFR exercise in supervised settings.25,139 As with any type of 
exercise there remains a possibility of adverse outcomes, which 
mostly manifest as disturbed hemodynamics, blood clotting, 
excessive discomfort, and muscle damage.139 This section will 
discuss the safety and feasibility of BFR exercise and consider-
ations for future spaceflight research.

Clotting and disturbed hemodynamics. Coagulation of blood 
and thrombus formation is recurrently identified as a potential 
risk factor for BFR exercise.23 However, acute and chronic stud-
ies have reported no detrimental effect of BFR exercise on 
markers of venous thromboembolism (VTE).139 Two studies 
suggest that, similarly to normal resistance exercise, BFR exer-
cise may stimulate the fibrinolytic system, evidenced by 
increased concentration of the thrombus-degrading tissue plas-
minogen activator.113,127 Astronauts may be at heightened risk 
for a thrombus formation during spaceflight,119 particularly in 
the internal jugular vein, due to the blood stasis, hypercoagula-
bility, and endothelial dysfunction that occurs in µG.109 The 
first case of thrombus formation in an astronaut that required 
anticoagulant medication was recently reported,9 with one case 
of thrombus formation reported previously.119 A previous study 
found no change in several markers of blood coagulation with 
BFR application during analogous 6° head-down tilt.127 Con-
sidering this and the rigorous medical examinations and 
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supervision that astronauts undergo, it would be reasonable to 
assume that BFR exercise would not exacerbate the risk of 
VTE during spaceflight. However, this should be examined 
using ground-based analogs (e.g., bed rest) to provide more 
conclusive evidence.

Another concern is that BFR exercise may generate abnormal 
reflex-mediated cardiovascular responses through ischemia and 
metabolite-mediated stimulation of the muscle metaboreflex 
arm of the exercise pressor reflex.168 As ischemic BFR exercise 
leads to considerable metabolite accumulation in the mus-
cle,172,173 it is hypothesized that this may stimulate the sympatho-
excitatory pressor reflex, causing an augmented hemodynamic 
response.19,168 BFR exercise does elicit a greater hemodynamic 
response compared to equivalent exercise without BFR.139 
However, the changes are within normal ranges130 and are less 
than or equivalent to high intensity exercise.130,139 The hemody-
namic response can be minimized via application of BFR accord-
ing to optimal guidelines for tourniquet cuff width and 
pressure.139 Spranger167 argues that greater caution is warranted 
when BFR is prescribed to populations with a compromised vas-
cular system. Research suggests that the muscle metaboreflex is 
enhanced during spaceflight,77,87 in particular the metaboreflex 
inputs from weight-bearing muscles.87 Stimuation of group III 
and IV afferents with BFR exercise can increase cerebral blood 
flow, but only when a hyperventilation-related decrease in Pco2 
is prevented by CO2 clamping.145 Considering this and the fact 
that blood pressure acts differently in µG,133 future research 
should first examine the impact of BFR on the metaboreflex and 
hemodynamic response and cerebral blood flow during exercise 
in simulated microgravity (e.g., parabolic flight).

There may also be a risk associated with CO2. Chronic expo-
sure to elevated CO2 concentrations on the ISS and hypercapnia 
cause several adverse effects for astronauts.118,155 Obstruction 
and accumulation of CO2 rich blood during BFR exercise and 
subsequent bolus-like release may have both favorable and 
unfavorable effects such as increased intracranial pressure, 
arrhythmogenic effects, and exacerbated Spaceflight Associated 
Neuro-ocular Syndrome (SANS). As discussed previously, the 
magnitude of CO2 increase with BFR exercise is less than high 
intensity exercise,189 which is currently performed onboard the 
ISS, and systemic concentrations of CO2 appear to return to 
baseline by 5 min post-BFR exercise.53 However, these data 
arise from ground-based studies and, as yet, the impact of BFR 
exercise on CO2 levels in astronauts who are exposed to rising 
CO2 levels throughout the working day is not known.

Discomfort and muscle damage. Other factors may determine 
the feasibility of using BFR exercise in spaceflight, such as the 
associated discomfort. BFR training causes more discomfort 
than the same exercise without BFR.166 The level of discomfort 
can be attenuated by application of lower pressures prescribed 
to LOP, and BFR has been well tolerated in postsurgical popula-
tions using this method.70 Furthermore, chronic use of BFR 
reduces the level of discomfort and increases tolerability.120 
Despite some concerns of an increased risk of muscle damage 
with BFR exercise, the majority of available evidence suggests 

that BFR does not appear to induce a muscle damage response 
to low intensity exercise.139 Furthermore, there is a lack of 
objective risk-specific evidence available to support these con-
cerns.25 Astronauts undergo thorough and extensive medical 
screening prior to flight, therefore it is highly unlikely that they 
are predisposed to a heightened risk of muscle damage. How-
ever, astronauts may be more susceptible to muscle damage 
when performing postflight reconditioning exercises if they are 
unaccustomed to the exercise load.148 Therefore, it is important 
that thorough medical screening is combined with use of opti-
mal BFR exercise parameters, monitoring of the individual’s 
response, and gradual progression of training.139

Conclusion
BFR could offer several operational and physiological benefits 
during different phases of spaceflight missions as a standalone 
and complimentary therapy. Substantial terrestrial findings 
support the efficacy of BFR training for improving the structure 
and function of the muscular and cardiovascular systems. 
Emerging data suggests that BFR exercise may have beneficial 
effects on other tissues such as bone, tendon, and hematopoi-
etic cells; however, these effects are largely unknown and 
require further investigation. At present there is no rigorous 
evaluation of BFR during spaceflight or ground-based analogs. 
Further research in the use of BFR as an exercise countermea-
sure to spaceflight is warranted.
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