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R E S E A R C H  A R T I C L E

Detecting individual differences and using them to make 
predictions of performance and learning are important 
for development of motor skills and rehabilitation 

training. In previous work, we studied learning of a dynamic 
balancing task in a spaceflight analog condition.12,19,21 Blind-
folded subjects controlled a Multi-Axis Rotation System device 
(MARS) that was programed to behave like an inverted pendu-
lum.13,20 Subjects used a joystick to stabilize themselves around 
the balance point. When they balanced in a Vertical Roll Plane 
(Fig. 1) and tilted relative to the gravitational vertical they 
received information about their angular position relative to 
gravity from their otolith organs and somatosensory receptors, 
and information about their angular velocity from their semi-
circular canals and somatosensory system. In this circumstance, 
subjects showed robust learning across many performance 
metrics. In contrast, in a spaceflight analog condition, subjects 

balanced in the Horizontal Roll Plane where they no longer 
tilted relative to the gravitational vertical and therefore had no 
gravitational cues about their angular position and had to rely 
on motion cues. Collectively, these subjects showed poor per-
formance, minimal learning, and a characteristic pattern of 
positional drifting.20 Similar results were found when subjects 
tried to dynamically stabilize about a Vertical Yaw Axis, where 
they also could not rely on gravitational cues.21 However, within 
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these spaceflight analog conditions, when we examined the per-
formance of individual subjects, we were surprised to find that 
some showed major improvements while others became worse 
across multiple performance measures.18 This pattern led us to 
explore three core questions that guide this paper. First, can we 
group subjects into clusters with statistically distinct proficien-
cies? Second, does each cluster have its own signature pattern 
and can this give us insights into why certain subjects learn and 
some continue to perform poorly? Finally, how early can we 
predict the final performance of a given subject?

METHODS

Subjects
There were 34 healthy adult subjects (18 women and 16 men, 
20.4 6 2.0 yr old) who had no prior experience in the Multi-
Axis Rotation System (MARS) and gave written consent to par-
ticipate in the experiment as approved by the Brandeis 
Institutional Review Board. Of the 34 subjects, 14 were recruited 
specifically for this study, 10 were from the Control group 
(Horizontal Roll condition) of the Vimal et al. 2017 study19 and 
10 were from the Control group (Horizontal Roll condition) of 
the Vimal et al. 2019 study18 to ensure a large enough group to 
allow meaningful performance clustering.

Equipment
The MARS was programmed with inverted pendulum dynam-
ics about a horizontal roll axis as shown in Fig. 1. MARS 
dynamics were governed by the equation, θPk sinθ=ɺɺ , where u 
is the angular deviation from the direction of balance, DOB (in 
degrees), and kP is the pendulum constant. As in our previous 
work, we used a pendulum constant of 600 deg · s22 (≈0.52 
Hz).19–21 We programmed ‘crash’ limits that restricted the 
angular range of the MARS to 6 60 deg from the direction of 
balance. Angular velocity was limited to 6 300 deg · s21, and 
angular acceleration to 6 180 deg · s22. Further details are 
available in Panic et al.13 At every time step (;0.02 s), a velocity 
increment proportional to the joystick deflection was added to 
the MARS velocity and computed by a Runge-Kutta RK4 

solver9 to calculate the new MARS angular position and veloc-
ity. The latency between a joystick deflection and a change in 
MARS angular velocity was 30 ms over the observed range of 
MARS spectral power of 0 to ≈0.75 Hz.

Procedure
Subjects were secured in the MARS with a five-point harness, a 
lap belt, lateral support plates and foot straps (Fig. 1). The 
MARS was configured for Horizontal Roll for all subjects. Their 
heads were stabilized using a U-shaped frame cushioned with 
foam that was attached to the MARS. To prevent visual or audi-
tory cues, they were blindfolded and wore earplugs and noise 
cancelling headphones that played white noise. A Logitech 
Freedom 2.4 cordless joystick was attached to the right arm rest 
and a “kill switch” was attached to the left arm rest that the sub-
ject could press to stop the experiment. No subject ever used 
the kill switch.

The experimental design required each subject to complete 
40 balancing trials divided equally over 2 consecutive days. 
Prior to data collection subjects watched a video of a person 
balancing the MARS in the Horizontal Roll Plane and of the 
MARS reaching the “crash boundaries” at 6 60 deg from the 
DOB (direction of balance) and then resetting. They were told 
that the MARS behaved like an inverted pendulum and to use 
the joystick to balance it at the DOB while also minimizing 
oscillations. Subjects were also familiarized with the symptoms 
of motion sickness using the Graybiel Diagnostic Criteria.8 
After signing consent forms, they were secured in the MARS, 
given a blindfold, earplugs, and noise cancelling headphones 
that played white noise. The 10 subjects from the Vimal et al. 
2019 study18 had also been given conscious strategies that the 
other 24 subjects did not receive. We found no statistical differ-
ences between those subjects and the 10 from Vimal et al. 
201821 study or the 14 new subjects tested here.

Subjects heard an auditory “begin” at the onset of a trial. 
Whenever they reached the crash boundaries, they heard “lost 
control, resetting”, and during the reset the joystick was dis-
abled as the MARS automatically reset to the start position at a 
rate of 5 deg · s21. Once at the reset position, which was always 
0 deg, they heard an auditory “begin” command and the joy-
stick was simultaneously enabled. Subjects participated in two 
sessions conducted on consecutive days. On each day they 
underwent 5 blocks of 4 trials, with each trial consisting of 100 
cumulative seconds of balancing, excluding the reset times after 
crashes, or a total elapsed time of 150 s. After every 4 trials sub-
jects were brought to an upright orientation and were given a 
2-min break during which they were questioned about any 
symptoms of motion sickness. They were given no verbal feed-
back about their performance.

Statistical Analysis
Data from the reset phase following a crash when subjects had 
no control over the MARS were not included in the analysis. 
We applied a zero-phase, 5-pole high pass Butterworth filter 
with a cutoff frequency of 5 Hz on the MARS angular position 
and velocity data, and joystick deflections, all of which were 

Fig. 1.  The multiaxis rotation device (MARS) was programmed with inverted 
pendulum dynamics in the vertical roll axis (left) and the horizontal roll axis 
(right). Straight grey arrows represent the direction of balance.
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sampled at 20.7 6 1.1 ms (approximately 50 Hz). Unless 
otherwise noted, each of the following measures described 
below was calculated in every trial and then averaged across 
the four trials in a block.

MARS Performance. MARS performance was quanti-
fied by calculating the average MARS angular position 
(MeanMARS) and the standard deviation of MARS angular 
position (STDMARS). The frequency of crashes (Crashes) 
was found by counting the number of crashes in a trial and 
then dividing by the trial duration. The average MARS 
angular deviation from the direction of balance (|Mag|Pos), 
and the average magnitudes of MARS velocity (|Mag|Vel) 
and acceleration (|Mag|Accel) were calculated by taking the 
mean of the absolute value of each measure. We quantified 
the rate of drift (DriftRate) by tracking the center of  
loops in the MARS position versus velocity phase plots (see 
Fig. 2; for color see online at https://doi.org/10.3357/
AMHP.5552.2020). The loops were identified in the periods 
without crashes (balance time between consecutive 
crashes) in each trial. Loop “quadrants” were defined as 
points in each loop with unique velocity and acceleration 
attributes that could be visualized by drawing two orthogo-
nal lines intersecting at the loop center. The horizontal 
positions of the points in the loops with maximum velocity 
were used to identify the “centers.” The rate of drift (Drift-
Rate) was calculated by fitting a regression line to the 
hemiloop center positions (which was the mean absolute 
value of the loop center velocity) versus time and taking  
the mean absolute values of the slopes for individual 
segments.

Joystick Commands. Joystick commands were quanti-
fied by calculating the average of the absolute value of joy-
stick deflections (|Mag|Joy), which could vary from +1 to -1 
for full deflection. Intermittency of joystick deflections 
(%ZeroJoy) was determined by finding the percentage of 
data points where the joystick deflection was # 61% of its 
maximum amplitude. Anticipatory joystick deflections 
(%Anticipatory; Fig. 2) were defined as those that removed 
energy from the MARS by decelerating it as it was moving 
toward the DOB. We calculated the percentage of anticipa-
tory joystick deflections by finding the number of data 
points where the MARS angular position and joystick 
deflection had opposite signs to the MARS angular velocity 
and then dividing by the total number of data points. While 
anticipatory joystick deflections can help stabilize the 
MARS, they are often used when poor control has led to 
large velocities near the balance point. When subjects learn 
to stabilize the MARS, the percentage of anticipatory joy-
stick deflections decreases. Destabilizing joystick deflec-
tions were defined as those that add energy to the MARS, 
accelerating it away from the DOB. We calculated the per-
centage of destabilizing joystick deflections (%Destab; Fig. 
2) by finding the number of data points where the MARS 
angular position and velocity, and the joystick deflection all 
had the same sign and then dividing by the total number of 
data points.

Fig. 2. P osition-velocity phase plots from representative subjects from the Proficient 
(top), Somewhat Proficient (middle) and Not Proficient (bottom) groups. Graphs on 
the left are from the first trial on Day 1 and graphs on the right are from the final trial 
on Day 2. The thick lines represent empirically determined crash boundaries from 
which joystick deflections cannot lead to recovery. Light grey points (light blue 
points online) are destabilizing joystick deflections and dark grey points (red points 
online) are anticipatory joystick deflections. (See color online figure at https://doi.
org/10.3357/AMHP.5552.2020.)
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The average instantaneous phase difference between joystick 
deflections and MARS angular position is an index of the regu-
larity of joystick commands in relation to MARS motion. To 
calculate it we used an approach introduced by Park et al.14 
First, the data from joystick deflections and MARS angular 
position were detrended to remove the drift by subtracting the 
moving mean average, with a sliding window of 1 s, from the 
raw data. Next, the angular component of the Hilbert transform 
for the detrended MARS angular position and joystick deflec-
tion were calculated and were subtracted to obtain the instanta-
neous phase difference. To obtain the standard deviation of this 
phase difference, we used the circular standard deviation func-
tion. For every trial, we calculated the instantaneous phase for 
the segments of data between crashes and then averaged them. 
Sometimes after a crash, a subject initially would not deflect the 
joystick so we only analyzed the data after the joystick became 
deflected more than 1% of its maximum. A smaller average 
phase difference signifies less variability in joystick deflections 
in relation to MARS angular position.

Stabilogram Diffusion Function. The Stabilogram Diffusion 
Function was developed by Collins and DeLuca to model 
human quiet stance balancing.3,4 It involves calculating the 
mean-squared displacement (MSD) of sway as a function of 
different time intervals:4

2

2 1
( )

( )

N m

i
i

t
MSD

N m

θ
θ

−

=
∆

∆
=<∆ > =

−
∑

where u is MARS angular position, Dt is the time interval, N is 
the total number of data points, and m is the number of data 
points for the total time interval. Like Collins and DeLuca,4 we 
set the maximum time interval to 10 s and calculated the MSD 
over time intervals that did not have any crashes. The Stabi-
logram Diffusion Function allowed Collins and DeLuca to 
characterize postural quiet stance balancing over two regimes: 
the short-term random walk regime and the longer term cor-
rective adjustment regime. In our prior work, we applied the 
Stabilogram Diffusion Function to dynamic stabilization in the 
MARS.19–21 We found that subjects balancing in the Vertical 
Roll Plane rapidly improved their balance control; however, 
subjects in the Horizontal Roll Plane showed delayed learning 
and persistent drifting in the long term.

To find the short- and long-term regimes, we first calculated 
the Hurst scaling exponent (H) using the equation:

2 2H
tθ >=<∆ ∆

H was then obtained by plotting the log of MSD vs. the log 
of Dt, calculating its slope, and then dividing by 2. Described in 
our previous papers in greater detail,19–21 H is important 
because when it changes from . 0.5 deg2 · s21 to , 0.5, it rep-
resents a transition between the short- and long-term regimes 
that is called the “critical point” (CP). When H is . 0.5 it means 
the MARS is continuing to move in the same direction, when it 
is 5 0.5 the MARS motion is Brownian, and when it is , 0.5 it 
is antipersistent. We also calculated the diffusion coefficient (D) 
of the SDF, which represents the rate of change of the MSD:

2
2D t>=<∆θ ∆

The short-term diffusion coefficient (DS) is found by taking 
one-half of the slope between Dt 5 0 s and the critical point on 
the standard MSD plot. The long-term diffusion coefficient 
(DL) corresponds to one-half of the slope between the critical 
point and Dt 5 10 s. If DL.0 deg2 · s21, the MSD continues to 
increase in long time intervals. To quantify the overall energy of 
the long-term regime (MeanMSD), we calculated the average 
MSD between the CP and Dt 5 10 s. Both the MeanMSD and 
DriftRate are sensitive to the average rate of positional drifting, 
whereas DL represents the long-term rate of change in the 
mean-squared displacement.

Machine Learning
Our first task was to identify clusters of subjects with distinct 
performance proficiencies at the end of Day 2 after 40 trials. We 
grouped individual subjects into one of three clusters using 
their data from the final block of Day 2, and then verified that 
the three clusters represented ‘Proficient’, ‘Somewhat Proficient’, 
and ‘Not Proficient’ performance (Fig. 3 and Table I). Next, we 
applied the Gaussian Naïve Bayes method to build models 
capable of predicting the final performance of an individual 
using his/her performance data in early blocks. In this step, we 
reduced the redundancy of the features (i.e., performance mea-
sures) and did feature engineering to create new features repre-
senting the learning of subjects.

Discovering Proficiency Clusters. In clustering analysis, we 
first selected a list of metrics that are essential to measure learn-
ing and performance based on our prior work.18,19,21 We found 
that subjects in the Vertical Roll condition learned to improve 
performance by reducing the standard deviation of angular 
position (STDMARS), the number of crashes (Crashes), the 

Fig. 3. D ata from all 34 subjects are plotted in a graph of Crash Frequency vs. 
Standard Deviation of Angular Position. These measures were chosen because 
they are good indicators of performance. The stars (*) represent Proficient sub-
jects, the triangles (∂) represent Somewhat-Proficient and the squares (N) rep-
resent Not-Proficient subjects.
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overall short term energy of the system (DS), and the magni-
tude of angular velocity and acceleration (|Mag|Vel, |Mag|Accel). 
They did so by reducing the magnitude of joystick deflections 
(|Mag|Joy) and the number of destabilizing and anticipatory joy-
stick deflections (%Destab, %Anticipatory) while increasing 
the percentage of intermittent joystick deflections (%Zero). In 
the Horizontal Roll condition, subjects displayed a pattern of 
positional drifting not seen in the Vertical Roll condition, so we 
included DriftRate and DL with the idea that good performers 
may learn to decrease them. Finally, many poor performers 
used very stereotyped joystick deflections which we identified 
as being suboptimal (STDJoy_Pos). Next, we designed a Bayesian 
Gaussian Mixture model (BGMM)2 to group subjects into three 
clusters because our analysis showed that there were three 
statistically distinct clusters. Our preliminary examination 
revealed that the three clusters corresponded to: subjects who 
improved across many metrics, subjects who became worse 
across many metrics, and subjects who had a mixture of these 
two. To evaluate how different two clusters were from each 
other, we developed a new score, termed MSilhouette, by incor-
porating the Mahalanobis distance10 into the Silhouette score.16 
Unlike the traditional Silhouette score, our MSilhouette score 
uses the Mahalanobis distance to handle the correlations 
between metrics, and then effectively reduces the influence of 
redundancies among the chosen metrics. We used the MSil-
houette score in the random permutation test, MRPT, (see 
online Appendix sections 1.1,2,3 for details; https://doi.
org/10.3357.AMHP.5552sd.2020) which showed the obtained 
subject clusters are pair-wise significantly different. The MRPT 
produced three P-values, one for each of the comparisons 
between the Proficient, Somewhat Proficient, and Not-Profi-
cient groups. Because we conducted three comparisons, we 
used a Bonferroni adjusted value of 0.0167. All of the P-values 
were less than 0.0167, so we concluded that the clusters were all 
statistically distinct.

To justify the labels of the obtained clusters, we visually 
examined the clusters to see whether they truly reflected train-
ing performances. Fig. 3 shows that the clusters faithfully repre-
sent three different levels of training outcomes: Proficient 
(smaller STDMARS and Crashes), Somewhat Proficient, or Not 
Proficient (larger STDMARS and Crashes). Table II summarizes 
the independent t-test results confirming that the majority of 
the chosen metrics are statistically distinct between clusters.

Feature Reduction and Engineering. Before building the  
predictive classifier, we reduced the number of features (i.e., 
metrics) from the original 12 (STDMARS, Crashes, DS, |Mag|Vel, 
|Mag|Accel, |Mag|Joy, %Destab, %Anticipatory, %Zero, DriftRate, 
DL, STDJoy_Pos) to avoid redundancy that could lead to potential 
overfitting. We did this by first taking out four features and then 
using the remaining 8 to perform the clustering analysis 
described above. When the clusters were still statistically dis-
tinct, we assumed that the 4 removed features were redundant. 
We rotated through all combinations and kept all of the sets of 
8 features that met the criteria of having a P-value less than 
0.0015. We then merged those lists together to obtain the final 
list: STDMARS, Crashes, DS, |Mag|Vel, %Destab, %Anticipatory, 
DriftRate, DL.

We trained the predictive classifier using the selected met-
rics listed above and further explored the learning demon-
strated by subjects from block to block. The learning is reflected 
in changes of the metrics over blocks, which indicate whether a 
given subject is able to improve from his or her previous experi-
ence. Therefore, we designed the learning features for each 
block as the changes of the above chosen metrics, i.e., the differ-
ence of a chosen metric in the current block and its means in 
previous blocks (refer to sections 4 and 5 of the online Appen-
dix I; https://doi.org/10.3357/AMHP.5552sd.2020). The num-
ber of the engineered features at the n-th block is ( )1 /2M n n− , 
which will quickly exceed the number of samples as n grows 
and causes over-fitting in training our classifier. To tackle this 

Table I. P aired t-Tests Within Groups.

PROFICIENT (N 5 10) SOMEWHAT PROFICIENT (N 5 15) NOT PROFICIENT (N 5 9)

METRIC DAY1BLOCK1 DAY2BLOCK5 DAY1BLOCK1 DAY2BLOCK5 DAY1BLOCK1 DAY2BLOCK5

MARS PERFORMANCE
STDMARS (deg) 21.3 8.1*** 22.0 19.2* 21.1 22.9
Crashes (Hz) 0.09 0.002*** 0.13 0.02*** 0.23 0.11**
|Mag|Pos (deg) 16.7 6.5*** 16.4 16.2 14.8 17.8*
|Mag|Vel (deg/s) 18.3 6.9*** 24.5 17.6*** 30.4 36.4
|Mag|Accel (deg/s2) 71 29*** 86 66** 100 163**
DriftRate (deg/s) 4 0.25*** 5 1*** 5.5 4.5

JOYSTICK COMMANDS
|Mag|Joy 0.22 0.08*** 0.27 0.23 0.28 0.50**
%ZeroJoy 33 53** 31 30 35 15**
%Destab 1.6 5e-4*** 3.2 0.6*** 6.8 4.8
%Anticipatory 3.4 0.2*** 5.1 2.8* 5.2 14**
STDJoy_Pos 57.4 67.8** 53.7 55.8 52.2 40.2

STABILOGRAM-DIFFUSION FUNCTION
DS (deg2/s) 111 21*** 210 119*** 69 354
DL (deg2/s) 29.5 5.0*** 28.7 24.2 45.4 32.7
MeanMSD (deg2) 493 112*** 607 453* 646 797

* P , 0.05; **P , 0.01; and ***P , 0.001. Bolded values represent improving performance whereas italicized values represent worsening performance.
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problem, we applied two feature selection methods: a tree-
based feature selection method5 and the L1 regularization,6 and 
obtained better performance in the leave-one-out cross valida-
tion test.

Training the Predictive Classifier. One of our main goals is to 
build a robust classifier capable of predicting the final perfor-
mance (proficient, somewhat proficient, not proficient) of indi-
vidual subjects as early as possible in their 2-d experiments. 
Due to the difficulty and time required to run 2-d experiments, 
we only had 34 participants. For such a small number of partici-
pants, we used the leave-one-out cross validation method17 to 
ensure that we trained a robust classifier for accurately predict-
ing training results. Each time 33 participants were used to 
build a classifier, which was then used to predict the training 
performance of the left-out participant. This procedure was 
repeated 34 times and the accuracies were averaged and sum-
marized in Fig. 4. We found that the Gaussian Naive Bayes 

method with a uniform class prior outperformed other conven-
tional methods, such as logistic and Lasso regression, in the 
leave-one-out cross validation.

RESULTS

Following Collins and De Luca,3 we first averaged the SDFs 
across the four trials in each block for each subject, and then 
calculated the short-term and long-term diffusion coefficients, 
and the final MSD. We then averaged the values across all par-
ticipants. For all other measures, we first calculated them for 
each trial and then averaged them across trials in a block, and 
finally averaged them across all subjects.

To test for learning within groups, we carried out paired 
two-tailed t-tests between Block 1 of Day 1 to Block 5 of Day 2. 
To test for differences between groups, we performed indepen-
dent two-tailed t-tests on Block 5 of Day 2 and applied the Bon-
ferroni correction where, because each group was compared 
twice, we adjusted the P value to be less than 0.025. In the tables, 
statistical significance is denoted with symbols, where ‘*’ was 
assigned when P , 0.05 and ‘**’ when P , 0.01, and ‘***’ when 
P , 0.001. Bonferroni corrections are a robust way to prevent 
Type I errors due to multiple comparisons per variable but are 
less efficient for correcting inflated chances of reporting coinci-
dental results as real in comparisons of multiple variables per 
comparison. Our approach to maintaining the Type I error rate 
of multivariate hypothesis tests was to report all comparisons 
made, rather than picking only the significant ones. Under this 
condition, there is an extremely small likelihood that the entire 
pattern of results across all variables reported in Table II is 
coincidental.

The 34 subjects were clustered into three statistically distinct 
categories based on their data from the final block (Block 5) of 
the second day. To determine whether these clusters reflected 
differences in performance we plotted the data for two key met-
rics: the standard deviation of angular position and the crash 

Fig. 4.  The accuracy of predictions to determine final performance in Block 10 
on day 2.

Table II. I ndependent t-Tests Between Groups (Day 2 Block 5).

METRIC PROFICIENT NOT PROFICIENT PROFICIENT SOMEWHAT PROFICIENT SOMEWHAT PROFICIENT NOT PROFICIENT

MARS PERFORMANCE
STDMARS (deg) 8.1 22.9** 8.1 19.2** 19.2 22.9
Crashes (Hz) 0.002 0.11** 0.002 0.02* 0.02 0.11**
|Mag|Pos (deg) 6.5 17.8** 6.5 16.2** 16.2 17.8
|Mag|Vel (deg/s) 6.9 36.4** 6.9 17.6** 17.6 36.4**
|Mag|Accel (deg/s2) 29 163** 29 66** 66 163**
DriftRate (deg/s) 0.25 4.5** 0.25 1* 1 4.5**

JOYSTICK COMMANDS
|Mag|Joy 0.08 0.50** 0.08 0.23** 0.23 0.50**
%ZeroJoy 53 15** 53 30** 30 15*
%Destab 5e-4 4.8** 5e-4 0.6* 0.6 4.8**
%Anticipatory 0.2 14** 0.2 2.8* 2.8 14**
STDJoy_Pos 67.8 40.2** 67.8 55.8** 55.8 40.2**

STABILOGRAM-DIFFUSION FUNCTION
DS (deg2/s) 21 354** 21 119* 119 354**
DL (deg2/s) 5.0 32.7** 5.0 24.2** 24.2 32.7
MeanMSD (deg2) 112 797** 112 453** 453 797*

* P , 0.05; **P , 0.01; and ***P , 0.001. Reported P levels have been Bonferroni corrected.
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frequency, which confirmed that the clusters define Proficient, 
Somewhat Proficient, and Not Proficient performers. Table I 
shows significant group differences across multiple metrics 
using independent t-tests.

To determine how early we could reliably predict final per-
formance, we used the Gaussian Bayes Method. We found that 
by Block 2 of Day 1 we could reliably predict with 80% accuracy 
a subject’s final group.

The Proficient Group (N 5 10)
Table I shows that these subjects had significant learning across 
all metrics when comparing Block 1 of Day 1 to Block 5 of Day 
2. In the MARS Performance category, they were able to 
decrease the standard deviation of angular position (STDMARS), 
the frequency of crashes (Crashes), the magnitudes of MARS 
angular position (|Mag|Pos), velocity (|Mag|Vel), and accelera-
tion (|Mag|Accel), and the rate of positional drifting (DriftRate). 
In the Joystick Command category, they learned to decrease the 
magnitude of joystick deflections (|Mag|Joy), the percentage of 
destabilizing joystick deflections (%Destab), the percentage of 
anticipatory joystick deflections (%Anticipatory), and to 
increase the intermittency of joystick deflections (%ZeroJoy) 
and the variability in the phase difference between joystick 
deflection and angular position (STDJoy_Pos). In the Stabi-
logram-Diffusion Function category, the proficient subjects sig-
nificantly decreased the short-term diffusion coefficient (DS), 
the long-term diffusion coefficient (DL) and the long-term 
mean-squared displacement (MeanMSD).

The Somewhat-Proficient Group (N 5 15)
For MARS Performance, these subjects significantly decreased 
the standard deviation of angular position (STDMARS), the fre-
quency of crashes (Crashes), the magnitudes of MARS angular 
velocity (|Mag|Vel) and acceleration (|Mag|Accel), and the rate of 
positional drift (DriftRate). For Joystick Commands, they 
decreased the percentage of destabilizing (%Destab) and antici-
patory joystick deflections (%Anticipatory). In the Stabilogram-
Diffusion Function category, they decreased the short term 
diffusion coefficient (DS) and the average final mean-squared 
displacement (MeanMSD).

The Not-Proficient Group (N 5 9)
Subjects in the Not-Proficient Group improved on only one 
metric: they learned to decrease the frequency of crashes 
(Crashes). All other statistically significant changes indicated 
deteriorating performance. In the MARS Performance cate-
gory, they statistically increased the magnitudes of both MARS 
angular position (|Mag|Pos) and acceleration (|Mag|Accel). In the 
Joystick Command category, they increased the magnitude of 
joystick deflections (|Mag|Joy), and the percentage of anticipa-
tory joystick deflections (%Anticipatory) and decreased the 
percentage of intermittent joystick deflections (%ZeroJoy).

The Proficient vs. Not-Proficient Group
Comparing Day 2 Block 5 data for the Proficient and Not-
Proficient groups using independent t-tests showed highly 

significant differences (Table II). In the MARS Performance 
category, the Not-Proficient group had a 2.8 times greater stan-
dard deviation of angular position (STDMARS), 55 times greater 
frequency of crashes (Crashes), 2.7 times greater magnitude of 
MARS angular position (|Mag|Pos), 5.3 times greater velocity 
(|Mag|Vel), 5.6 times greater acceleration (|Mag|Accel), and 18 
times greater rate of positional drifting (DriftRate). In the Joy-
stick Command category, the Not-Proficient group had a 6.3 
times greater magnitude of joystick deflections (|Mag|Joy), 3.5 
times lower intermittency of joystick deflections (%ZeroJoy), 
100 times greater percentage of destabilizing joystick deflec-
tions (%Destab), 70 times greater percentage of anticipatory 
joystick deflections (%Anticipatory), and 1.7 times less variabil-
ity in the phase difference of joystick deflection and MARS 
angular position (STDJoy_Pos). In the Stabilogram-Diffusion 
Function category, the Not-Proficient group had a 16.8 times 
greater short-term diffusion coefficient (DS), 6.5 times greater 
long-term diffusion coefficient (DL), and 7 times greater mean-
squared displacement (MeanMSD).

The Proficient vs. Somewhat-Proficient Group
We found highly significant differences between the Proficient 
and Somewhat-Proficient groups across all metrics using inde-
pendent t-tests comparing Block 5 data of Day 2 (Table II). In 
the MARS Performance category, the Somewhat-Proficient 
group had a 2.4 times greater standard deviation of angular 
position (STDMARS), 10 times greater frequency of crashes 
(Crashes), 2.5 times greater magnitude of MARS angular posi-
tion (|Mag|Pos), 2.6 times greater velocity (|Mag|Vel), 2.3 times 
greater acceleration (|Mag|Accel) and 4 times greater rate of posi-
tional drift (DriftRate). In the Joystick Command category, the 
Somewhat-Proficient group had 3 times greater magnitude of 
joystick deflections (|Mag|Joy), 1.8 times less the intermittency 
of joystick deflections (%ZeroJoy), more than 100 times greater 
percentage of destabilizing joystick deflections (%Destab), 14 
times greater percentage of anticipatory joystick deflections 
(%Anticipatory), and 1.2 times less variability in the phase dif-
ference between joystick deflection and MARS angular position 
(STDPos_Joy). In the Stabilogram-Diffusion Function category, 
the Somewhat-Proficient group had a 5.6 times greater short-
term diffusion coefficient (DS), 4.8 times greater long-term 
diffusion coefficient (DL), and 4 times greater long-term 
mean-squared displacement (MeanMSD).

The Somewhat-Proficient vs. Not-Proficient Group
Significant differences between the Somewhat-Proficient and 
Not-Proficient groups were present for their Day 2 Block 5  
data (Table II). In the MARS Performance category, the Not-
Proficient group had 5.5 times greater frequency of crashes 
(Crashes), 2 times greater velocity (|Mag|Vel), 2.5 times greater 
acceleration (|Mag|Accel), and 4 times greater drift rate of angu-
lar position (DriftRate). In the Joystick Command category, the 
Not-Proficient group had 2 times greater magnitude of joystick 
deflections (|Mag|Joy), 2 times less intermittency of joystick 
deflections (%ZeroJoy), 8 times greater percentage of destabiliz-
ing joystick deflections (%Destab), 5 times greater percentage 
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of anticipatory joystick deflections (%Anticipatory), and 1.4 
times greater variability in the phase difference between joy-
stick deflection and MARS angular position (STDJoy_Pos). In the 
Stabilogram-Diffusion Function category, the Not-Proficient 
group had a 3 times greater short-term diffusion coefficient 
(DS) and 1.8 times greater long-term mean-squared displace-
ment (MeanMSD).

DISCUSSION

Being able to identify, classify, and predict individual differ-
ences in skilled motor learning is important for optimizing 
training as well as rehabilitation practices. Recent advances in 
machine learning techniques are helping accomplish these 
goals; however, they primarily rely on humans first labeling 
‘ground truths’ (e.g., Proficient, Somewhat-Proficient, and Not-
Proficient) to every subject in the training data set. This 
approach is difficult for complex real-life tasks where subjects 
can use many different strategies and can optimize different 
performance metrics. In our task, blindfolded subjects balance 
in the MARS in the Horizontal Roll plane where they do not 
have access to relevant positional gravitational cues from the 
otoliths and somatosensory receptors and can only use motion 
cues detected by the semicircular canals and somatosensory 
receptors. Because this condition is very disorienting, subjects 
develop a variety of different strategies. For example, one sub-
ject may be able to stabilize with relatively small oscillations of 
low velocity about the DOB but occasionally may make a desta-
bilizing joystick deflection that causes a crash. Another subject 
may be able to avoid the crash boundaries but have large posi-
tional oscillations at high velocities. Which of these subjects is 
better? Do they belong to the same group? These are questions 
that cannot be easily answered and are why we did not approach 
our balancing paradigm with a machine learning approach of 
using data that had preassigned labels. Instead, we clustered 
subjects into three statistically distinct groups based on their 
final block of experimental trials on the second day.

To verify whether these clusters had meaning, we plotted  
all 34 subjects on a graph using two important indicators of 
performance, positional variability (STDMARS) and the fre-
quency of hitting the crash boundaries (Crashes). Fig. 3 shows 
that one cluster had infrequent crashes and small standard 
deviations of angular position (the Proficient group), another 
had much larger values (the Not-Proficient group), and another 
was between these two (the Somewhat-Proficient group). We 
confirmed the validity of these clusters by performing inde-
pendent t-tests between groups, which showed significant dif-
ferences across multiple metrics (Table I). After reducing 
redundant features and performing feature engineering, we 
used the Gaussian Naive Bayes method to create predictive clas-
sifiers. Fig. 4 shows that following Block 2 of Day 1 we can pre-
dict a given subject’s final cluster with 80% or greater accuracy. 
One application for such an early detection of final performance 
is that those subjects who are predicted to perform poorly  
can receive specialized training such as that described in Vimal 

et al.,18 which enhances performance in a spaceflight analog 
condition.

Clustering gives insights into the performance and learning 
of each group. The Proficient group showed statistically signifi-
cant learning across all measures (Table I). They did this by 
learning to use smaller joystick deflections (|Mag|Joy) and 
decreasing the percentages of anticipatory (%Anticipatory) and 
destabilizing (%Destab) joystick deflections while increasing 
the intermittency of the joystick deflections (%ZeroJoy). Reduc-
ing anticipatory joystick deflections reflects proficient learning 
because while anticipatory joystick deflections can stabilize the 
MARS, they are often used when poor control has led to large 
velocities near the balance point. By contrast, the Not-Proficient 
group only learned to decrease the frequency of crashes, other-
wise all other statistically significant changes reflected worsen-
ing performance. How is it possible that these subjects could 
reduce the frequency of crashes when they did not improve in 
any other metric? Fig. 5 shows representative trial data from a 
Not-Proficient subject (top) and a Proficient subject (bottom). 
It reveals that the Not-Proficient subjects tended to use a non-
optimal strategy of very large magnitude joystick deflections in 
a stereotyped back and forth pattern that caused them to oscil-
late around the balance point and reduce the frequency of 
crashes. To quantify this across subjects, we used a metric moti-
vated by Park et al.,14 calculating the standard deviation of the 
phase difference between angular position and joystick deflec-
tions (STDJoy_Pos). The Proficient group learned to statistically 
increase STDJoy_Pos, meaning that they used more varied joy-
stick deflections in relation to the MARS angular position. By 
contrast, the Not-Proficient group was unable to do this and 
had a value that was statistically distinct and 1.7 times less than 
the Proficient group. This pattern means that the Not-Proficient 
Group maintains a stereotyped phase relationship between joy-
stick deflection and MARS angular position.

Why were subjects in the Proficient group able to success-
fully stabilize around the balance point whereas the Somewhat-
Proficient and Not-Proficient groups could not? One possibility 
is that subjects in the Proficient group have lower vestibular 
thresholds for angular acceleration and could make better esti-
mates about angular position by integrating angular accelera-
tion signals. Some subjects in the Not-Proficient group 
remarked that they had difficulty determining when the MARS 
was moving, suggesting that they had poor vestibular thresh-
olds and may have used the strategy of large sways at high 
velocities to obtain a better sense of their angular direction. 
Work by Rosenberg et al.,15 for example, has shown a correla-
tion between vestibular thresholds and acuity in a manual 
tracking task.

However, our paradigm has the additional facet of being a 
skilled motor learning task. One additional possibility is that 
during skilled motor learning subjects explore a complex solu-
tion space that can have many solutions, some of which are sub-
optimal.7,11 Poor performers may actually acquire a suboptimal 
strategy because they do not explore the full solution space and 
because their strategy may provide a sense of stability,1 such as 
reducing the frequency of Crashes at the cost of very large 
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oscillations. Is there a way to ensure that subjects in our task 
avoid the suboptimal strategy of very stereotyped large magni-
tude joystick deflections? Ganesh et al.7 designed a task with 
multiple solutions and found that even when subjects were 
shown the best solution they nevertheless tended to use their 
initial suboptimal strategies. Similarly, in Vimal et al.18 one 
group of subjects in the Horizontal Roll condition were given 
explicit verbal instructions on an optimal strategy of making 
intermittent small magnitude joystick deflections. This group 
was statistically no different than the group that received no 

instructions. Another group underwent a specialized training 
program that taught them how to dissociate position and 
motion cues in addition to an optimal joystick strategy.18 All of 
those subjects showed significant learning of the optimal strat-
egy, and full retention 4 months later. Together these findings 
suggest that poor performers may initially have adopted a sub-
optimal strategy that can be identified using machine learning 
techniques, and that training programs can be implemented to 
lead them toward the optimal strategy and performance similar 
to that of the Proficient group.

Fig. 5.  Trial data of a representative subject from the Proficient Group (top) and from the Not-Proficient group (bottom) for their final trial on Day 2. Joystick deflec-
tions (grey line) from the Not-Proficient subject are stereotypical and those from the Proficient subject are not. Black lines are the MARS angular position.
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