Hemoglobin Oxygen Saturation with Mild Hypoxia and Microgravity

Johnny Conkin; James H. Wessel, III; Jason R. Norcross; Omar S. Bekdash; Andrew F. J. Abercromby; Matthew D. Koslovsky; Michael L. Gernhardt

INTRODUCTION:	Microgravity (μ G) exposure and even early recovery from μ G in combination with mild hypoxia may increase the
	alveolar-arterial oxygen (O ₂) partial pressure gradient.
METHODS:	Four male astronauts on STS-69 (1995) and four on STS-72 (1996) were exposed on Earth to an acute sequential hypoxic
	challenge by breathing for 4 min 18.0%, 14.9%, 13.5%, 12.9%, and 12.2% oxygen–balance nitrogen. The 18.0% O_2

- mixture at sea level resulted in an inspired O₂ partial pressure (P₁O₂) of 127 mmHg. The equivalent P₁O₂ was also achieved by breathing 26.5% O₂ at 527 mmHg that occurred for several days in μ G on the Space Shuttle. A Novametrix CO₂SMO Model 7100 recorded hemoglobin (Hb) oxygen saturation through finger pulse oximetry (S_pO₂, %). There were 12 in-flight measurements collected. Measurements were also taken the day of (R+0) and 2 d after (R+2) return to Earth. Linear mixed effects models assessed changes in S_pO₂ during and after exposure to μ G.
- **RESULTS:** Astronaut S_po₂ levels at baseline, R+0, and R+2 were not significantly different from in flight, about 97% given a P_io₂ of 127 mmHg. There was also no difference in astronaut S_po₂ levels between baseline and R+0 or R+2 over the hypoxic challenge.
- **CONCLUSIONS:** The multitude of physiological changes associated with μ G and during recovery from μ G did not affect astronaut S_pO₂ under hypoxic challenge.
 - **KEYWORDS:** oxygen dissociation curve, pulmonary edema, gas exchange, spaceflight.

Conkin J, Wessel JH III, Norcross JR, Bekdash OS, Abercromby AFJ, Koslovsky MD, Gernhardt ML. Hemoglobin oxygen saturation with mild hypoxia and microgravity. Aerosp Med Hum Perform. 2017; 88(6):527–534.

arly in human space exploration there were concerns that exposure to microgravity (μ G) would lead to hypoxemia since cardiopulmonary physiology was disrupted. Any potential disruptions did not impact performance or operational success in short-duration flights, so detailed investigation into pulmonary gas exchange was delayed until experiments were devised and longer duration flights were possible. For example, there was no indication at the time that pulmonary gas exchange in µG was impeded in the normoxic Skylab atmosphere of 70% oxygen (O₂) at 5.0 psia, an inspired O₂ partial pressure (P_1O_2) of 148 mmHg. But there were concerns about gas exchange efficiency, given the mildly hypoxic atmosphere of the shuttle staged denitrogenation protocol. The implementation of the shuttle staged denitrogenation protocol in 1984 allowed for safe and effective extravehicular activity (EVA).³ The challenge was to reduce the risk of decompression sickness (DCS) to an acceptable level on going from the 14.7 psia air atmosphere to the 4.3 psia 100% O₂ atmosphere in the spacesuit

without lengthy in-suit denitrogenation (prebreathe) time. The solution was to stage the depressurization at 10.2 psia while breathing 26.5% O_2 for about 2 d before the first EVA. Tissue nitrogen (N_2) tension was assumed to approximate inspired N_2 partial pressure at 10.2 psia, about 353 mmHg, after about 2 d. Several competing flammability, materials, and medical constraints culminated in an acceptable mildly hypoxic atmosphere at 10.2 psia with a P_1O_2 of 127 mmHg; the staged condition was equivalent to breathing air at 1220 m (4000 ft) altitude.

Waligora et al.²¹ in 1982 evaluated the combination of hypoxia and simulated μ G exposure in two small groups of

From the NASA Johnson Space Center, Houston, TX.

This manuscript was received for review in December 2016. It was accepted for publication in March 2017.

Address correspondence to: Johnny Conkin, KBRwyle, 2400 NASA Parkway, Houston, TX 77058; johnny.conkin-1@nasa.gov.

Reprint & Copyright © by the Aerospace Medical Association, Alexandria, VA.

DOI: https://doi.org/10.3357/AMHP.4804.2017

subjects with an 8-h exposure to 2440 m (8000 ft) in an altitude chamber with (N = 4) and without (N = 3) 28 h of 6° headdown bed rest. The expected hemoconcentration was observed in the bed rest group, with hematocrit increasing from 43 to 47%, but there was no indication that the simulated μ G reduced arterial oxygenation below the decrease expected while breathing a P₁O₂ of 108 mmHg at 2440 m altitude. With bed rest, mean arterial blood oxygen $(P_a o_2)$ and carbon dioxide $(P_a co_2)$ partial pressures were 61 and 35 mmHg, respectively, and without bed rest were 59 and 36 mmHg, respectively. Arterial blood hemoglobin (Hb) oxygen saturation (S_aO₂) was about 90% for each group (estimated from figures). One source shows alveolar oxygen (P_AO₂) at approximately 69 mmHg and alveolar CO₂ (P_Aco₂) at 36 mmHg for an acute exposure to 2440 m altitude.⁵ The difference in alveolar-arterial oxygen partial pressure (A-aDO₂) with and without bed rest was about 9 mmHg, normal for resting young men at sea level.⁵ Loeppky et al.^{12,13} in 1993 concluded that 5° head-down bed rest and hypoxic exposure for 8 d accentuated the loss of fluids and electrolytes, thus reducing plasma volume, but there were no negative impacts from these fluid changes on pulmonary mechanics or gas exchange, suggesting no evidence of pulmonary interstitial edema. We concede that bed rest and head-down bed rest are imperfect analogs to µG exposure. Uncertainty about a widening A-aDO₂ in µG persisted, particularly following a 1990 report of a large decrease in plasma oxygen partial pressure (Po_2) from blood taken from the fingers of three cosmonauts after 171 d on the Mir space station and the slow recovery of Po₂ postflight.⁷ Without corroboration of these Po₂ values with true arterial blood samples or even indirect pulse oximetry, these data remain questionable.

In response, and before results from Spacelab experiments on pulmonary function in μ G were readily available from Prisk et al.,¹⁵ investigators in the Environmental Physiology Laboratory (EPL) at the Johnson Space Center (JSC) developed a Detailed Supplemental Objective (DSO), designated 494, to collect basic cardiopulmonary data in μ G. We report here on an experiment titled, "Pulmonary Oxygen Exchange in Microgravity" conceived in early 1990, implemented on two shuttle missions from 1995 to 1996, but not described in the scientific literature until now. Our conclusions have particular relevance to NASA. The next generation of exploration missions will likely use a mildly hypoxic atmosphere at 8.2 psia with 34% O₂ and a P₁O₂ of 128 mmHg to facilitate safe and effective EVAs by reducing prebreathe time while maintaining an acceptably low risk of DCS.¹⁴

Efficient gas exchange across the lung dictates P_aO_2 . Hypoxemia results when there is a decrease in P_IO_2 , hypoventilation, diffusion limitation, shunt, or ventilation-perfusion (\dot{V}_A/\dot{Q}) heterogeneity. Changes in the last three variables increase A-aDO₂. One could posit that exposure to μ G might lead to hypoxemia through any number of mechanisms, but this communication is not a review of that vast literature; see Prisk et al.^{16,17,18} for current findings about pulmonary gas exchange in μ G. We focused on mild hypoxia during exposure to μ G on the Space Shuttle and recovery from μ G combined with an acute sequential hypoxic challenge. Our measure of Hb oxygen saturation was through indirect finger pulse oximetry, designated S_po_2 . Our first null hypothesis was that exposure to μG did not change S_po_2 compared to what was measured when breathing a P_Io_2 of 128 mmHg in 1 G. Our second null hypothesis was that recovery from μG did not change S_po_2 during an acute sequential hypoxic challenge with P_Io_2 s of 128, 106, 96, 92, and 87 mmHg as compared to what was measured preflight.

METHODS

Subjects

Eight male astronauts volunteered and provided written informed consent to participate after the protocol was approved by the JSC Institutional Review Board. The eight astronauts, four on each flight of the Shuttle *Endeavor* (STS-69 in 1995 and STS-72 in 1996), had height, weight, and ages of 182.6 cm \pm 7.8, 78.0 kg \pm 5.3, and 40.9 yr \pm 3.6 (mean \pm SD), respectively.

Measurements

Between 5 and 45 d before launch, astronauts reported to the EPL at JSC, in Houston, TX. They submitted to a 20-min seated acute sequential hypoxic challenge by breathing for 4 min 18.0%, 14.9%, 13.5%, 12.9%, and 12.2% O2 at sea level, all within \pm 0.1% of specified concentration with \pm 0.02% analysis. Longer intervals of hypoxic breathing were evaluated during the design phase, but were found to elicit unwanted symptoms in some subjects, including tingling sensations, light headedness, and lethargy. Nominal P₁O₂ for the bottle concentrations at 760 mmHg was 128, 106, 96, 92, and 87 mmHg, respectively, with \pm 1.4 mmHg for the extreme of the specified concentration. P_1O_2 is computed from $[(P_B - 47) \times F_1O_2]$, where P_B is ambient pressure (mmHg), 47 is vapor pressure (mmHg) of water at 37° centigrade, and F₁O₂ is the dry-gas decimal fraction of oxygen in the breathing gas. Barometric pressure on the day of testing was not measured and was assumed to be 760 mmHg at JSC and at the Kennedy Space Center (KSC).

A Novametrix CO₂SMO ETCO₂/S_pO₂ Model 7100 was used to measure and display Hb-O₂ saturation through finger pulse oximetry ($S_p O_2$, %), heart rate (HR, bpm), end-tidal CO₂ partial pressure ($P_{ET}^{-}CO_{2}$, mmHg), and respiration rate (RR, breaths \cdot min^{-1}). S_pO₂ and HR were measured using red and infrared wavelength light emitting diodes beamed into a finger. Heart rate was calculated by taking the inverse of the time interval between the peaks of the infrared light waveform. The capnograph measured CO₂ concentration and RR with a solid-state sensor, designated Capnostat II. The Capnostat II sensor was placed onto an airway adapter. The astronauts breathed through the adapter (bidirectional flow). Infrared light generated in one leg of the "U" shaped sensor was beamed through the window of the airway adapter to a detector in the other leg of the sensor. Some of this light is absorbed by the CO₂ as a result of respiration. Respiration rate was calculated by taking the inverse of the time interval between peaks of the CO₂ waveform.

While seated, the astronauts were fitted with a nose clip and then breathed through an on-demand scuba regulator (U.S. Divers Octopus, Vista, CA) each of five hypoxic mixtures, starting with 18% O₂. They briefly held their breath until the new mixture was made available. Between the mouth piece and the scuba regulator was the Capnostat II sensor mounted onto the airway adapter. S_pO₂, P_{ET}CO₂, RR, and HR were digitally displayed with whole number resolution on the Novametrix. These data were transcribed each minute for 4 min per gas mixture by lab personnel to a data collection sheet. The same process was followed postflight. On R+0 and R+2, data from the sequential hypoxic challenge were collected by lab personnel with astronauts resting and seated at the KSC in Titusville, FL.

Following launch, between 17 to 95 h, the astronauts also breathed for 10 min the shuttle atmosphere at 10.2 psia with 26.5% O_2 , which was an equivalent P_1O_2 of 128 mmHg as the 18.0% O₂ mixture at sea level. The Novametrix device was removed from an equipment locker on the middeck and prepared by an astronaut for use by the test astronaut. Then the device was returned to locker by the test astronaut until needed for another measurement. In total, 12 measurements were collected from 8 astronauts at various times during their exposure to a P₁O₂ of 128 mmHg. One astronaut on STS-72 had 4 measurements, another had 2, and the remaining 2 on STS-72 and 4 on STS-69 had a single measurement. No on-demand regulator was required in flight, just bidirectional breathing through the Capnostat II sensor mounted onto the airway adapter. The in-flight data were transcribed each minute for 10 min to a data collection sheet by the astronaut during quiet breathing. Lab personnel computed means for the 4-min pre/post data and the 10-min in-flight data and then transferred the means to an electronic datasheet for later statistical analysis.

Shuttle Environment

The STS-69 mission lasted 10.8 d and 8.9 d for STS-72. The atmospheric conditions at 14.7 psia for both missions combined were Po_2 of 3.16 \pm 0.10 psia with Pco_2 of 3.03 \pm 0.72 mmHg. The atmospheric conditions at 10.2 psia for the combined missions were Po₂ of 2.72 \pm 0.07 psia (P₁O₂ of 128 mmHg) with Pco₂ of 3.29 ± 0.60 mmHg (P₁CO₂ of 3.0 mmHg). Inspiring even a small concentration of CO₂ caused a large instrument error in the measurement of P_{ET}CO₂, so in-flight P_{ET}CO₂ was not available for analysis. Both shuttle flights included EVAs and required the use of the staged 10.2 psia denitrogenation protocol with astronauts living at 10.2 psia while breathing 26.5% O_2 before EVA. This condition persisted for 170 h in STS-69 and 51 h in STS-72 before the first EVA. The mean time at 10.2 psia on STS-69 before data collection was 20.4 h (ranged from 19 to 22 h) and 41.4 h (ranged from 17 to 95 h) for STS-72. The partial tissue denitrogenation at 10.2 psia allowed for a subsequent short 40 to 70-min 100% O_2 prebreathe period in the suit to further reduce the risk of DCS during about a 6-h EVA at 4.3 psia. The P₁O₂ during the EVA was slightly hyperoxic at 175 mmHg.

Statistics

We fitted linear mixed effects regression models¹⁹ to account for correlation between the unbalanced, repeated measures data collected on each astronaut to test our two research hypotheses. First, a main effects only model was estimated using maximum likelihood and compared to a model that additionally included potential interaction terms using a likelihood ratio test (LRT). Any influential interaction terms were then included in a final model that was fit using restricted maximum likelihood (REML), as maximum likelihood underestimates variance components by ignoring uncertainty attributable to fixed effects' estimation. We incorporated a random intercept term in each model, which accommodated random heterogeneity in astronauts' S_pO_2 levels that persisted throughout the study. We treated F_IO_2 , RR, HR, and $P_{ET}CO_2$ as continuous covariates, and condition (baseline, in-flight, R+0, R+2) as a categorical covariate. Condition entered each model using indicator variables for each level. Interaction terms were generated by taking the product of each continuous covariate and condition level.

We first tested the hypothesis that $S_p o_2$ was not different between baseline, in-flight, R+0, and R+2 measures while breathing a P_1O_2 of 128 mmHg using the main effects only, mixed effects model in Eq. 1:

$$\begin{split} S_p O_{2ij} &= \beta_0 + \beta_1 \times (Baseline)_{ij} + \beta_2 \times (R+0)_{ij} \\ &+ \beta_3 \times (R+2)_{ij} + \beta_4 \times HR_{ij} \\ &+ \beta_5 \times RR_{ij} + b_{0j} + \varepsilon_{ij}, \end{split}$$
 Eq. 1

where

5

$$b_{0j} \sim N(0, \sigma_{Astro}^2)$$
 and $\varepsilon_{ij} \sim N(0, \sigma^2)$.

Eq. 1 models the response $S_p O_{2ij}$ at the *i*th measurement for the *j*th astronaut, where β_0 is the overall population intercept, $\beta_1,...,\beta_5$ are the fixed effects for each covariate, and ε_{ij} is an independent error term. The random intercept takes the form of b_{0j} in this model's formulation, which allows for deviation from the population intercept for astronaut *j*. Here, we set the reference category for condition to in-flight to compare from μ G. Additionally, we controlled for RR and HR in the event they influenced $S_p o_2$. Note that $P_{ET} co_2$ was not available for inflight measurements. In a secondary model, we compared the model in Eq. 1 to one that incorporated interaction terms between RR (HR) and condition level.

To answer our second research question, we again fitted a linear mixed effects model to S_pO_2 data to investigate if Hb- O_2 saturation during an acute sequential hypoxic challenge with F_1O_2s of 18.0, 14.9, 13.5, 12.9, and 12.2% in 1 G differed following spaceflight. Specifically, Eq. 2 is the main effects only, mixed effects model:

$$\begin{split} S_p O_{2ij} &= \beta_0 + \beta_1 \times (R+0)_{ij} + \beta_2 \\ &\times (R+2)_{ij} + \beta_3 \times HR_{ij} + \beta_4 \times RR_{ij} \\ &+ \beta_5 \times P_{\text{ET}} \text{CO}_{2ij} + \beta_6 \times F_I O_{2ij} \\ &+ \beta_7 \times F_I O_2^{-2}_{ij} + b_{0j} + \varepsilon_{ij} \end{split} \qquad \text{Eq. 2}$$

This model takes a similar form to that presented in Eq. 1. Eq. 2 includes a curvilinear relationship between F_1o_2 as percentage

and measured $S_p o_2$ by incorporating a squared term for $F_1 o_2$, an acceptable approximation for the upper portion of the Hb- O_2 desaturation curve. As there was no sequential hypoxic challenge in spaceflight, we compared baseline (reference category) measures to those collected at R+0 and R+2. We were able to control for $P_{ET}Co_2$ in this model, in addition to RR and HR. Similar to our first approach, we compared Eq. 2 to a model including interactions between RR (HR, $P_{ET}Co_2$) and condition level.

RESULTS

Assessment of Change in $\rm S_pO_2$ After Breathing $\rm P_1O_2$ of 128 mmHg

Table I shows the means (M) and standard deviations (SD) for measurements taken at each time point. **Fig. 1** is a box and whisker plot of S_pO_2 for astronauts in each condition. Table I and Fig. 1 show an S_pO_2 of about 97%, regardless of the measurement time. **Fig. 2** is a scatter plot of S_pO_2 for astronauts in each condition, providing a visual assessment of within- and between-subject variability in S_pO_2 at a P_IO_2 of 128 mmHg. With the exception of the astronaut indicated with a ° symbol at R+0, we found that S_pO_2 levels remained relatively constant for each astronaut, regardless of measurement time.

Comparing the model presented in Eq. 1 to a model that additionally incorporated interaction terms using a LRT, we failed to reject the null hypothesis (interaction term's regression coefficients = 0) at the 0.05 α -level with a *P*-value = 0.24. Thus, we found no evidence to suggest a need to include interactions between condition and HR or RR in the final model. Results from the final model for our first research question are shown in **Table II**.

We conclude from Table II that there is not a statistically significant difference (0.05 α -level) in S_pO₂ at baseline, R+0, and R+2 conditions compared to in flight for the typical astronaut ($b_{0j} = 0$), holding all else constant (*P*-values = 0.582, 0.099, and 0.100, respectively). By typical astronaut we mean the random intercept term is zero so there is no astronaut-specific modification of estimated S_pO₂. Thus, there is not enough evidence in the data to claim S_pO₂ changed across baseline, inflight, R+0, and R+2 measures after breathing P₁O₂ of 128 mmHg for the typical astronaut.

Assessment of Acute Sequential Hypoxic Challenge

Table III summarizes the data collected during the hypoxic challenge at baseline, R+0, and at R+2. Note that as mean $S_p o_2$

decreases as F_Io_2 decreases the SD roughly increases fivefold. There is a slight increase in mean HR as F_Io_2 decreases, little change in RR, and slight increase in $P_{ET}co_2$ on R+2 (see **Table IV** for statistical significance).

Comparing the model presented in Eq. 2 to a model that additionally incorporated interaction terms using a LRT, we failed to reject the null hypothesis (interaction term's regression coefficients = 0) at the 0.05 α -level with a *P*-value = 0.25. Thus, we found no evidence to suggest a need to include the interactions effect between condition and HR, RR, or P_{ET}CO₂ in the final model. Results from the final model for our second research question are shown in Table IV.

We conclude from Table IV that there is no statistically significant difference (0.05 α -level) in S_pO_2 from baseline to R+0 or R+2 for the typical astronaut ($b_{0j} = 0$), holding all else constant (*P*-values = 0.873 and 0.052, respectively). Thus, there is not enough evidence in the data to claim that recovery from μ G changes S_pO_2 saturation compared to what is measured during an acute sequential hypoxic challenge with P_1O_2s of 128, 106, 96, 92, and 87 mmHg in 1 G.

DISCUSSION

Our contribution appears after much has been learned about gas exchange physiology in µG.18 Pulmonary diffusion capacity (D_{LCO}) from single-breath carbon monoxide breathing and membrane diffusing capacity (D_m) both increase to parallel the increase in pulmonary capillary blood volume (V_c) in μ G. The persistent increase in D_{LCO} and D_m is evidence that pulmonary edema does not occur in µG. In addition, gravity imposes a degree of matching between ventilation and perfusion. Prisk et al.¹⁸ concluded that, "... the increases (D_{LCO}, D_m, and V_c) rapidly revert to preflight levels on return to 1g. This in-flight increase was attributed to a transition of the pulmonary circulation from a 1g configuration (ie, zones 1, 2, 3) to a situation in which the lung vasculature is entirely zone 2 or 3. This would result in more uniform filling of the pulmonary capillary bed and an attendant increase in the surface area available for gas exchange". So an otherwise normal lung with no change in the apparent range of \dot{V}_A/\dot{Q} in μG^{15} is expected to have no impediment to gas transfer. Hypoxemia is just attributable to breathing a mildly hypoxic P₁O₂, assuming normal red blood cell (RBC) function. This conclusion is supported here and by earlier efforts^{12,13,21} to address the issue by combining bed rest with hypoxic altitude exposure.

Table I. Results After Breathing P₁O₂ of 128 mmHg.

		MEASUREMENT TIME						
	BASELINE (N = 8)	IN-FLIGHT (<i>N</i> = 12)	R+0 (<i>N</i> = 8)	R+2 (<i>N</i> = 8)				
MEASUREMENT	M (SD)	M (SD)	M (SD)	M (SD)				
S _p O ₂ (%)	96.8 (0.7)	97.0 (0.5)	96.8 (1.0)	97.1 (0.9)				
P _{ET} co ₂ (mmHg)	39.5 (4.6)	not available	39.1 (4.5)	39.3 (6.0)				
RR (breaths ∙ min ⁻¹)	8.6 (2.5)	15.2 (4.4)	9.6 (4.4)	8.5 (2.8)				
HR (bpm)	68.5 (10.0)	65.7 (4.9)	75.5 (8.0)	68.7 (7.5)				

Fig. 1. Box and whisker plots of $S_p o_2$ at $P_1 o_2$ of 128 mmHg from baseline, inflight, R+0, and R+2.

No two humans are exactly the same, so the same response to hypoxic challenge is not expected. S_pO_2 is the final integrated result of O_2 transport from the environment to RBCs. Multiple coupled events through time dictate how O_2 from the environment finally binds to Hb, so it is not surprising that we measured large subject-specific variations in S_pO_2 during the acute, sequential hypoxic challenge across conditions. A similar conclusion about subject-specific factors was reached after an extensive review of the Hypoxic Ventilatory Response in mammals.²⁰ When O_2 supply is limited, certain subject-specific factors influence S_pO_2 whereas when O_2 supply is not limited those factors have lesser effect. Subject variations in hypoxiainduced arteriovenous shunting,⁹ ventilatory response,²⁰ or modifications of \dot{V}_A/\dot{Q} in response to hypoxia⁶ are a few such considerations.

We did observe that no two astronauts responded in the same way to the repeated hypoxic challenges, except all

Fig. 2. Scatter plot of S_po_2 at P_1o_2 of 128 mmHg from baseline, in-flight, R+0, and R+2. Each different symbol represents each of the eight astronauts. Note that during the in-flight measurements one astronaut (x) provided four measurements and a second (+) provided two, all others provided one. The plot is useful to visualize variations within and between astronauts across time points.

showed some decrease in $S_p o_2$ while breathing reduced $F_1 o_2 s$. For example, Table III records a sevenfold increase in SD for $S_p o_2$ while breathing 12.2% O_2 compared to breathing 18.0% O_2 for the baseline condition. Horiuchi et al.⁸ shows that even when the hypoxic intervals are extended to 60 min in 11 males there was an eightfold increase in SD for $S_p o_2$ while breathing 12% O_2 compared to breathing 18% O_2 (see their Table 1). In contrast, Laurie et al.⁹ show in 12 subjects a 3.5-fold increase in SD for $S_p o_2$ while breathing 10% O_2 for 30 min compared to breathing 16% O_2 (see their Table 3). Replacing $P_1 o_2$ with $P_A o_2$ would likely reduce the within- and between-subject variability in $S_p O_2$ to a progressive hypoxic challenge as defined by $P_A o_2$. $P_A o_2$ reflects the integrated ventilatory response to an increasing hypoxic dose while $P_1 o_2$ does not change in response to ventilatory drive.

Table II. Mixed Effects REML Regression for P₁O₂ of 128 mmHg Across Four Conditions.

FIXED EFFECT	COEFFICIENT (95% CI)	STANDARD ERROR	z-SCORE	P-VALUE
Intercept, β_0	100.61 (98.49, 102.73)	1.082	92.97	< 0.001
Condition				
Baseline, β_1	0.195 (-0.500, 0.891)	0.355	0.55	0.582
$R + 0, \beta_2$	0.617 (-0.117, 1.351)	0.374	1.65	0.099
$R + 2, \beta_3$	0.587 (-0.112, 1.286)	0.357	1.64	0.100
HR, β ₄	-0.062 (-0.093, -0.032)	0.016	-4.01	< 0.001
RR, β_5	0.029 (-0.032, 0.091)	0.031	0.94	0.349
RANDOM EFFECT	ESTIMATE (95% CI)	STANDARD ERROR		
σ _{Astro}	0.156 (0.011, 2.151)	0.209		
σ	0.619 (0.468, 0.819)	0.089		

Transition to μ G initiates many adaptive changes in physiology that then revert on return to 1 G. There are adjustments to RBCs and the plasma volume they occupy due to μ G exposure,^{1,2} not even considering mild hypoxia at 10.2 psia that could induce a small increase in 2,3-Diphosphoglycerate (2,3-DPG) within the RBCs⁴ or the chronic inspiration of about 3 mmHg CO₂. And then there

Table III.	Physiological	Responses to	Three Acute	Sequential	Hypoxic (Challenges.
------------	---------------	--------------	-------------	------------	-----------	-------------

	S _p o ₂ (%)	P _{ET} co ₂ (mmHg)	RR (breaths • min ⁻¹⁾	HR (bpm)
F _I O ₂ (%)	M (SD)	M (SD)	M (SD)	M (SD)
Baseline				
18.0	96.7 (0.7)	39.5 (4.6)	8.6 (2.5)	68.5 (10.0)
14.9	94.8 (1.6)	38.0 (5.1)	7.5 (2.4)	67.6 (8.9)
13.5	93.1 (2.5)	36.4 (5.5)	7.6 (2.4)	68.9 (9.2)
12.9	90.3 (3.7)	36.2 (4.8)	7.3 (2.4)	70.5 (9.7)
12.2	87.5 (5.0)	35.2 (6.1)	7.4 (3.0)	71.7 (10.8)
R+0				
18.0	96.8 (1.0)	39.1 (4.5)	9.6 (4.4)	75.5 (8.0)
14.9	94.2 (2.3)	38.6 (5.5)	9.9 (4.8)	78.3 (8.2)
13.5	91.3 (3.2)	38.6 (5.3)	10.0 (4.5)	80.1 (10.2)
12.9	88.8 (4.2)	37.6 (4.9)	9.9 (4.4)	80.4 (10.2)
12.2	88.0* (4.3)	35.6* (4.5)	9.7* (5.0)	82.5* (10.1)
R+2				
18.0	97.1 (0.9)	39.3 (5.9)	8.5 (2.8)	68.7 (7.5)
14.9	94.9 (1.9)	39.2 (5.4)	8.2 (2.8)	71.2 (7.1)
13.5	92.6 (2.1)	39.4 (5.8)	8.0 (3.0)	72.2 (7.2)
12.9	91.7* (1.6)	38.8* (5.6)	7.7* (3.6)	73.9* (9.2)
12.2	87.6! (2.3)	38.6! (4.7)	6.8! (3.4)	72.8 ⁺ (6.7)

 $N = 7, ^{\dagger}N = 6.$

are physiological readjustments on return to 1 G. We entertained the possibility that changes in RBCs and the plasma environment of the RBCs during or after μ G exposure could have modified Hb affinity for O₂, and yet astronaut S_pO₂ was no different in μ G with a P₁O₂ of 128 mmHg compared to baseline, R+0, or R+2. Also, there was no difference in astronaut S_pO₂ following μ G exposure between baseline, R+0, or R+2 during the acute sequential hypoxic challenge.

Future studies about S_pO_2 and hypoxic challenge before, during, and after μ G exposure would benefit by measuring variables that influence S_pO_2 , like P_AO_2 , Hb, and 2,3-DPG concentrations in RBCs from venous blood. These additional explanatory variables in combination with the mixed effects regression model would reduce the large within- and between-subject variability in S_pO_2 at increasing hypoxic dose, as defined by P_AO_2 . Our sample size was not dictated by an a priori power analysis; this was a pilot, exploratory study. The absence of additional explanatory variables limited our ability to account for the variability in S_pO_2 and so limited our ability to detect all but the greatest impediment to O_2 transfer onto Hb. A future study design is enabled by the few data collected in this pilot study.

We showed that exposure to and recovery from μG did not significantly alter the gas exchange process that dictates $S_{P}O_{2}$ response to mild hypoxia in 8 astronauts. We now discuss the association between HR and exposure to µG. Changes in HR are potentially attributable to recovery from µG but are superimposed on the hypoxic challenge. For example, postflight tachycardia is a common response to decreased plasma volume associated with orthostasis.^{2,17} However, this study added a stimulus to potentially increase HR as part of the postflight hypoxic challenge. We reanalyzed the data from the hypoxic challenge to investigate changes

in HR across condition levels. In this supplemental analysis, we fitted a linear mixed effects model, similar to Eq. 2, but only controlled for a linear effect of F₁O₂. We also evaluated a potential interaction between F_1O_2 and condition level to see if F_1O_2 moderated the association between μ G recovery and the HR response. We found a significant difference in HR during the hypoxic challenge on R+0 ($\beta_1 = 10.0$, P < 0.001) and R+2 $(\beta_2 = 2.95, P = 0.024)$ compared to baseline. Recall that the value of the β coefficient is the magnitude of the difference of the outcome variable for the condition R+0 or R+2 referenced to baseline. This difference was not unexpected since HR is increased following exposure to µG¹⁷ but recovers to normal in the ensuing days. The interaction between condition level and F_1O_2 was not significant (P = 0.49); therefore, we conclude the change in HR (Δ HR / Δ F₁O₂) at R+0 and R+2 compared to baseline was not moderated by changes in F₁O₂ during the hypoxic challenge. We posit that the offset increases in HR on R+0 and R+2 compared to baseline are attributable to recovery from µG associated with orthostasis and not increased sensitivity of the HR response to the sequential hypoxic challenge. We do not have the appropriate data to support a full discussion

Table IV.	Mixed Effects	REML Rear	ession for	Hypoxic	Challenge	Across Thr	ee Conditions.

FIXED EFFECT	COEFFICIENT (95% CI)	STANDARD ERROR	z-SCORE	P-VALUE
Intercept, β_0	2.384 (-24.267, 29.035)	13.598	0.18	0.861
CONDITION				
$R + 0, \beta_1$	-0.087 (-1.151, 0.977)	0.543	-0.16	0.873
$R + 2, \beta_2$	0.918 (-0.009, 1.846)	0.473	1.94	0.052
HR, β_3	-0.065 (-0.127, -0.003)	0.032	-2.05	0.041
RR, β ₄	0.111 (-0.059, 0.282)	0.087	1.28	0.201
$P_{ET}co_2, \beta_5$	-0.252 (-0.389, -0.135)	0.060	-4.22	< 0.001
F_1O_2, β_6	12.464 (8.953, 15.975)	1.791	6.96	< 0.001
$F_1 o_2^2, \beta_7$	-0.360 (-0.475, -0.246)	0.058	-6.17	< 0.001
RANDOM EFFECT	ESTIMATE (95% CI)	STANDARD ERROR		
o _{Astro}	0.627 (0.227, 1.727)	0.324		
σ	2.000 (1.742, 2.292)	0.140		

about the ventilatory response to hypoxia during and after exposure to μ G, see Prisk et al.¹⁶

The middeck of the *Endeavor* was less than an ideal controlled laboratory setting. There are more stressors in spaceflight (confinement, disrupted sleep, anxiety, elevated PCo₂) than just μ G and mild hypoxia while breathing 26.5% O₂ at 10.2 psia, which apparently did not dominate our results. There were few in-flight data samples (12

samples with 8 astronauts), and missing data on R+0 and R+2 with our lowest O₂ concentrations. Unfortunately, pre/post measurements while breathing air at sea level (an F_1O_2 of 20.9% with a P_1O_2 of 149 mmHg) were not collected. A reasonable value for $S_p O_2$ at sea level is 98%, which compares closely to two in-flight SpO2 measurements of 97.8% and 97.4% taken under normoxic conditions. These values dropped by 1 to 96.7% and 96.5% while exposed to a P_1O_2 of about 127 mmHg in the shuttle. Table I shows pre/post results compared to in-flight results where $P_1 o_2$ was about 127 mmHg. But the pre/post results are after breathing 18.0% O2 at sea level for 4 min whereas the in-flight results are after breathing 26.5% O_2 at 10.2 psia for 19 to 95 h. We contend that our comparisons are valid but would have preferred more time breathing 18% O₂. The original experiment design was to include an in-flight hypoxic challenge. However, the cost and potential hazard to launch the five pressurized hypoxic mixtures was prohibitive, leaving only the results from breathing 18% O₂ for 4 min to compare with in-flight results.

Our assumption of a "nominal" in-flight environmental condition of 10.2 psia with 26.5% O₂ appears valid. The atmospheric conditions at 10.2 psia were maintained at a Po₂ of 2.72 ± 0.07 psia, which at 10.2 psia provides a P₁O₂ of 128 mmHg when F_1O_2 is 26.6%. But the mean PCO_2 of 3.29 \pm 0.60 mmHg combined with the mild hypoxia may have contributed to the in-flight increase in RR. There is a long history about the challenge to control ambient PCO_2 in spaceflight and the health and performance consequences if not maintained below about 8 mmHg.^{10,11} However, Prisk et al.¹⁵ attributes an increase in in-flight RR to factors other than just increased Pco₂. Also, the absence of the on-demand regulator in-flight, which was used to deliver the hypoxic breathing gases pre- and postflight, makes comparison of RRs problematic. It was decided not to build and launch a pressurized breathing system with 26.5% O2 with the same on-demand regulator to provide a P₁O₂ of 128 mmHg while at 10.2 psia since the ambient conditions in the shuttle at 10.2 psia with 26.5% O₂ provided the equivalent hypoxia, even if comparisons of RR would be problematic.

In summary:

- 1) There was no difference in astronaut S_po_2 (about 97%) after breathing 18% O_2 for 4 min at 760 mmHg before and after spaceflight and breathing 26.5% O_2 at 527 mmHg for 10 min after days in μ G, both at a P_1o_2 of about 128 mmHg.
- There was no difference in astronaut S_pO₂ between baseline, R+0, or R+2 during the acute, sequential hypoxic challenge.
- 3) We conclude that there was no acclimatization to mild hypoxia during spaceflight that alters $S_p o_2$ levels upon return to 1 G.

ACKNOWLEDGMENTS

We thank James M. Waligora and Randy B. Morris for gathering valuable details about DSO-494 that flew on the Shuttle *Endeavor* from 1995–96. Steven

S. Laurie provided valuable discussion and editing of the manuscript. This work was made possible through the Human Health and Performance Contract (NNJ15HK11B) between the National Aeronautics and Space Administration and KBRwyle. Funding for this research was provided by the NASA Human Research Program. Conclusions are those of the authors and are not necessarily endorsed by the National Aeronautics and Space Administration.

Authors and affiliations: Johnny Conkin, Ph.D., M.S., James H. Wessel, III, M.S., B.S., Jason R. Norcross, M.S., B.S., Omar S. Bekdash, M.S., B.S., and Matthew D. Koslovsky, Ph.D., M.S., KBRwyle, Houston, TX; and Andrew F. J. Abercromby, Ph.D., M.S., and Michael L. Gernhardt, Ph.D., M.S., NASA Johnson Space Center, Houston, TX.

REFERENCES

- Alfrey CP, Udden MM, Leach-Huntoon C, Driscoll T, Pickett MH. Control of red blood cell mass in spaceflight. J Appl Physiol (1985). 1996; 81(1):98–104.
- Buckey JC Jr. Space physiology. New York: Oxford University Press, Inc; 2006:139–168.
- Conkin J. Preventing decompression sickness over three decades of extravehicular activity. Houston, TX: Johnson Space Center; June 2011. NASA Technical Publication NASA/TP-2011-216147.
- Cymerman A, Maher JT, Cruz JC, Reeves JT, Denniston JC, Grover RF. Increased 2,3-diphosphoglycerate during normocapnic hypobaric hypoxia. Aviat Space Environ Med. 1976; 47(10):1069–1072.
- DeHart RL, Davis JR, eds. Fundamentals of aerospace medicine, 3^{ed} ed. Baltimore (MD): Lippincott Williams and Wilkins; 2002:34–35.
- Faiss R, Pialoux V, Sartori C, Faes C, Deriaz O, Millet GP. Ventilation, oxidative stress, and nitric oxide in hypobaric versus normobaric hypoxia. Med Sci Sports Exerc. 2013; 45(2):253–260.
- Haase H, Baronov VM, Asyamolova NM, Polyakov VV, Yu G, et al. First results of PO₂ of arterialized capillary blood of cosmonauts during long-term flight in the space station "Mir". [Abstract IAF/IAA-90-518.] Paper presented at the 41st Congress of the International Astronautical Federation; October 6–12, 1990; Dresden, Germany. Paris (France): International Astronautical Federation; 1990.
- Horiuchi M, Endo J, Dobashi S, Kiuchi M, Koyama K, Subudhi AW. Effect of progressive normobaric hypoxia on dynamic cerebral autoregulation. Exp Physiol. 2016; 101(10):1276–1284.
- Laurie SS, Yang X, Elliott JE, Beasley KM, Lovering AT. Hypoxiainduced intrapulmonary arteriovenous shunting at rest in healthy humans. J Appl Physiol (1985). 2010; 109(4):1072–1079.
- Law J, Van Baalen M, Foy M, Mason SS, Mendez C, et al. Relationship between carbon dioxide levels and reported headaches on the International Space Station. J Occup Environ Med. 2014; 56(5): 477–483.
- 11. Loeppky JA. The effects of low levels of CO_2 on ventilation during rest and exercise. Aviat Space Environ Med. 1998; 69(4):368–373.
- Loeppky JA, Roach RC, Selland MA, Scotto P, Greene ER, Luft UC. Effects of prolonged head-down bedrest on physiological responses to moderate hypoxia. Aviat Space Environ Med. 1993; 64(4):275–286.
- Loeppky JA, Roach RC, Selland MA, Scotto P, Luft FC, Luft UC. Body fluid alterations during head-down bedrest in men at moderate altitude. Aviat Space Environ Med. 1993; 64(4):265–274.
- Norcross J, Norsk P, Law J, Arias D, Conkin J, et al. Effects of the 8 psia/32% O₂ atmosphere on the human in the spaceflight environment. Houston (TX): NASA Johnson Space Center; 2013. NASA Technical Memorandum NASA/TM-2013-217377.
- Prisk GK, Elliott AR, Guy HJB, Kosonen JM, West JB. Pulmonary gas exchange and its determinants during sustained microgravity on Spacelabs SLS-1 and SLS-2. J Appl Physiol (1985). 1995; 79(4):1290–1298.
- Prisk GK, Elliott AR, West JB. Sustained microgravity reduces the human ventilatory response to hypoxia but not to hypercapnia. J Appl Physiol (1985). 2000; 88(4):1421–1430.

- Prisk GK, Fine JM, Cooper TK, West JB. Vital capacity, respiratory muscle strength, and pulmonary gas exchange during long-duration exposure to microgravity. J Appl Physiol (1985). 2006; 101(2):439–447.
- Prisk GK, Fischer CL, Duncan JM. Pulmonary function. In: Risin D, Stepaniak PC, editors. Biomedical results of the space shuttle program. NASA/SP-2013-607, Chapter 4.5. Washington (DC): U.S. Government Printing Office; 2013:118–119.
- STATACorp. Stata Statistical Software: Release 14. College Station (TX): StataCorp LP; 2016.
- Teppema LJ, Dahan A. The ventilator response to hypoxia in mammals: mechanisms, measurement, and analysis. Physiol Rev. 2010; 90:675–754.
- Waligora JM, Horrigan DJ Jr, Bungo MW, Conkin J. Investigation of combined effects of bedrest and mild hypoxia. Aviat Space Environ Med. 1982; 53(7):643–646.